
 
 
 
 
 

GAA-Apache User's Manual 
 
 

Author: Li Zhou 
Email: zhou@isi.edu 

Last Updated: 01 SEP 2003 
 
 
 



 
 

 [PART I] INSTALLATION & CONFIGURATION 
 
 
(One) How To Install The GAA-Apache On Linux 
 
1. Download the file gaa-httpd.tar.gz onto local directory /usr/src and unzip it: 

cd /usr/src 
wget http://www.isi.edu/gost/info/gaaapi/source/gaa-httpd.tar.gz 
tar xzvf gaa-httpd.tar.gz 

Then a new directory “httpd-2.0.47” will be extracted under /usr/src. 
 
2. Make sure that the XML and LTDL libraries have been installed and the following libraries 
files exist: 
 ls /usr/lib/libxml2.so.2 
 ls /usr/lib/libltdl.so 
If not, install them or make symlinks from the same share libraries with different file name.  Also, 
these two libraries are also available under “/usr/src/httpd-2.0.40/gaa-api/lib”.  We could just 
copy them to “/usr/lib”. 
 
3. Go into the apache’s source directory and install GAA-Apache Web Server: 
 cd httpd-2.0.47 
 ./configure 
 make 
 make install 
The default installation directory for GAA-Apache is /usr/local/apache2.  If the user want to 
install it under another directory, add “--prefix [user-dir]” after the command “./configure”. 
 
 
(Two) How To Configure The GAA-Apache 
 
1. Modify the Apache’s Configuration File 
 
Edit the file “/usr/local/apache2/conf/httpd.conf”.  Here’s a typical example of GAA-Apache 
configuration: 
 
<Directory “/usr/local/apache2/htdocs”> 
 Indexes Includes FollowSymlinks SymLinksifOwnerMatch ExecCGI Multiviews 
 Options Indexes FollowSymlinks 
 AllowOverride None 
 Order allow,deny 
 Allow from All 
 Deny from 127.0.0.0/255.0.0.0 
 AuthName “Protected Files” 
 AuthType Basic 
 AuthUserFile /usr/local/apahce2/conf/user.conf 
 AuthGroupFile /usr/local/apahce2/conf/group.conf 
 Require valid-user 
 Satisfy All 
 EaclFile /usr/local/apache2/conf/1.eacl 
 GaaOrder eacl,apache expand 
</Directory> 
 
Besides the directives defined by Apache Web Server, we have two extra directives for the 
GAA-API. 
 



　 The first directive EaclFile provides the pathname of local policy file that will be applied to 
this domain. 

 
z The second directive GaaOrder illustrates the relationship between Apache’s traditional 

policy and EACL (Extensive Access Control Language) policy used by GAA-API.  Here 
are the meanings of all possible values. 

 
[Parameter 1] 
eacl,apache Evaluate EACL policy first. 
apache,eacl Evaluate Apache’s traditional policy first. 
 
[Parameter 2] 
expand  “OR” to the following policies. 
narrow  “AND” to the following policies. 
exact   Stop evaluation, return current answer. 

 
* Since GAA-API is calling the Apache’s modules to check the authentication of users and groups. 
Even when the Apache’s traditional policy is disabled by ”GaaOrder eacl,apache exact”, we 
should still provides the directives of AuthName, AuthType, AuthUserFile, AuthGroupFile and 
Require as well.  However, the user/group list given by the directive Require does not applies to 
GAA-API, which uses it own user/group list defined in EACL policy. 
 
 
2. Define the GAA-Apache’s EACL Policy 
 
Edit the file referred by the directive “EaclFile” and customize your own policy. Here’s an 
example of the policy file (/usr/local/apache2/conf/1.eacl).  A detailed specification of the EACL 
policy is available in PART II. 
 
eacl_mode 2 
 
pos_access_right  apache  “read” 
pre_cond_access_host  apache  “10.0.0.0/255.0.0.0 OR 128.9.0.0/16” 
pre_cond_access_time  local  “05/01/2002-06/30/2003 MON-FRI 8am-11:30am,1:30pm-5pm” 
pre_cond_access_user  apache  “winspring, hellene, file-owner” 
rr_cond_append_log  syslog  “on:success/#[user.ip] is granted” 
 
pos_access_right  apache  “read,execute” 
pre_cond_access_host  apache  “isi.edu” 
pre_cond_access_group  apache  “group-owner, me” 
rr_cond_email_notify  apache  “on:failure/root@localhost” 
 
 
*3. Defining Multiple Domains (optional) 
 
The policy applies to the specific domain (directory or group of files) that’s defined by directive 
<Directory> or <Files>.  Defining multiple domains with <Directory> and <Files>, we could 
apply different GAA policy files for different pages or resources.  For instance: 
 
<Directory “/usr/local/apache2/htdocs/mypages”> 
<Files “a.html”> 
 EaclFile /usr/local/apache2/conf/1.eacl 
 GaaOrder eacl,apache expand 
</Files> 
<Files “b.html> 
 EaclFile /usr/local/apache2/conf/2.eacl 
 GaaOrder eacl,apache expand 



</Files> 
<Directory> 
 
Besides defining in Apache’s main configuration file (/usr/local/apache2/conf/httpd.conf), we 
could also define the domain in the per-directory configuration file (.htaccess), which applies to 
the current directory that “.htaccess” lies in. 
 
 
(Three) How To Run GAA-Apache 
 
1. We could run the following command to start, stop or restart the GAA-Apache server: 
 /usr/local/apache2/bin/apachectl start 

/usr/local/apache2/bin/apachectl stop 
/usr/local/apache2/bin/apachectl restart 

 
2. The log file about the running status of GAA-Apache is stored on: 
 /usr/local/apache2/logs/error_log 
 



 
 

 [PART II] EACL POLICY SPECIFICATION 
 
 
The security policy of GAA-API is specified via EACL (Extensive Access Control Language).  
In this part, we will further introduce the format of EACL policy file and the currently supported 
conditions (either the constrains checked by the policy or the actions performed by the policy). 
 
 
(One) Format of EACL File 
 
Here’s the Backus-Naur Form specification of the EACL policy file: 
 
EaclFile ::== [“mode”  “0”| “1” | “2” ]  { Policy } 
Policy ::== PositiveAccessRight  { Condition }   

|  NegativeAccessRight  { Condition } 
PositiveAccessRight ::== “pos_access_right”  AccessAuthority  AccessValue 
PositiveAccessRight ::== “neg_access_right”  AccessAuthority  AccessValue 
AccessAuthority ::== “apache” 
AccessValue ::== “read” | “execute” | “*” 
Condition ::== ConditionType  ConditionAuthority  ConditionValue 
 
The field “mode” regulates the relationship between the EACL policy and the original Apache 
policy defined in “httpd.conf”. 

mode 0:  (expand) the request is granted if either EACL or Apache policy is satisfied. 
mode 1:  (narrow) the request is granted only if both EACL and Apache policy is satisfied. 
mode 2:  (exact) the request only applies to EACL policy. 

If this field is not defined in the EACL file, it’s set to 0 by default. 
 
Each EACL policy consists of the header and a list of conditions.  GAA-API has 4 types of 
condition: pre-condition, rr-condition(request-result-condition), mid-condition and post-condition.  
Pre-conditions correspond to the constraints checked by the policy.  Rr-conditions regulate the 
actions performed by the policy.  Mid-conditions and post-conditions are not used in current 
version of GAA-Apache. 
 
The fields “AccessAuthority” regulates the identity that a policy applies to.  For GAA-Apache 
it’s always set to “apache”.  The fields “AccessValue” regulates the type of access right that a 
policy applies to.  For GAA-Apache, there’re three possible values: “read” applies to the request 
whose HTTP method is GET or HEAD, “execute” applies HTTP method POST.  And “*” 
applies to any HTTP methods. 
 
Receiving each request, GAA-API evaluates from the first EACL policy towards the last one.  
For each policy, when all constraints defined by its pre-conditions are satisfied, for 
“pos_access_right”, the request is granted, and for “neg_access_right”, the request is denied.  If 
not all the pre-conditions are satisfied.  GAA-API will go on evaluating the next policy for 
access control decision. 
 
Besides making access control decision, GAA-API could also perform actions such as writing log 
info, sending alert email by rr-conditions.  If the corresponding ConditionValue in rr-condition 
starts with “on:success/”, this action is executed when all pre-conditions before are satisfied.  
Otherwise if the corresponding ConditionValue starts with “on:failure/”, this action is when these 
exists any pre-condition unsatisfied before this rr-condition. 
 
 
(Two) Available Conditions 
 



1. Host Condition: 
 
This condition checks if the remoted user is within the HostList specified. 
z Format: 

pre_cond_access_host   apache   HostList 
 
z HostList can be expressed in 5 formats: 

Domain name: [eg.] isi.edu    -- matches all domain in *.isi.edu 
IP address: [eg.] 162.105.203.94  -- matches a single IP address 
IP range:  [eg.] 166.111.    -- matches subdomain 166.111.*.* 
IP/Mask:  [eg.] 128.9.1.0/255.255.255.0 -- matches subdomain 128.9.1.* 
IP/CDR:  [eg.] 128.64.36.0/22  -- matches subdomain 128.9.36.0-128.9.39.255 

 
z And they could be integrated with the following operators: (from the highest priority on right 

to the lowest on left) 
 ( ), NOT, AND, SUB, OR 
 
z Example: 

pre_cond_access_host  apache  “(128.9.0.0/16 SUB 128.9.16.0/255.255.240.0 OR 162.105. 
AND pku.edu.cn) AND NOT 127.0.0.1” 

 
 
2. Time Condition 
 
This condition checks if the current time is within the TimeSpan specified, which could be either 
Local Time (ConditionAuthority="local") or Greenwich Mean Time (ConditionAuthority="gmt") 
z Format: 

pre_cond_access_time   [ local | gmt ]  TimeSpanList 
TimeSpanList ::= TimeSpan {“;” TimeSpan} 
TimeSpan ::= { [DateList] [DayList] [TimeList] } 

 
z TimeSpan could regulate restrictions on Date, Day and Time. We use “;” to separate them. 

Within each DateList, DayList or TimeList: 
• use “-“ to express an interval, with starting time on left and ending time on right.   

[eg]:  10:30am-20:30pm  1/15/03-5/20/03 
• use “,” to separate the intervals, it equals to the relational operator “OR”. 

[eg]:  MON, WES-FRI  8am-11am,1pm-5pm 
 
z DateList could be defined in three eligible formats: 

• mm/dd/yy  restricted on year, month and date both. 
[eg]:  01/01/2003-12/31/2004 

• mm/dd  restricted on month and date only, regardless which year it is. 
[eg]:  04/01-05/31 

• 00/dd  restricted on date only, regardless which year and month it is. 
[eg]:  00/10-00/20 

DayList is defined by the following string: MON TUE WES THU FRI SAT SUN 
[eg]:  MON-THU,SAT,SUN 

TimeList could be defined in two eligible formats: 
• hour24 

[eg]: 10:30-22:00 
• hour12 with am/pm 

[eg]: 12am-5:30pm 
 
z Examples: 

pre_cond_access_time  local  “MON-FRI 8am-8pm;SAT,SUN 1pm-5pm” 
pre_cond_access_time  gmt   “01/01/03-05/20/03,08/20-12/20” 

 



 
3. Authentication Conditions 
 
Two conditions “pre_cond_access_id_user” and “pre_cond_access_id_group” checks the identity 
and group membership that authenticated by the client. 
z Format: 

UserCondition ::= pre_cond_access_id_user  apache  UserList 
UserList ::= UserName {“,” UserName} 
GroupCondition ::= pre_cond_access_id_group  apache  GroupList 
GroupList ::= GroupName {“,” GroupName} 

  
z In current GAA-Apache integration, GAA-API is still borrowing the Apache module 

“mod_auth” to implement authentication.  Therefore to enable the authentication conditions, 
we should also provide corresponding information in Apache configuration files.   

 
z Within your concerned domain (<Directory> or <Files>) of main configuration file 

“httpd.conf” or per-directory configuration file “.htaccess”, add the following lines 
AuthName  AlertString 
 AuthType  “Basic” | ”Digest” | “DBM” | “Anon” 
 AuthUserFile  UserDefFile 
 AuthGroupFile  GroupDefFile 
 Require valid-user 
 Satisfy All 

  
z Then generate the UserDefFile and GroupDefFile defined by the directives “AuthUserFile” 

and “AuthGroupFile” (The following direction applies to “AuthType Basic” only, please 
refer to the Apache’s User Manual for other authentication types.) 

 
• Use command “htpasswd” to generate user file 
[Execute]:  /usr/local/apache2/bin/htpasswd [-c] UserDefFile UserName 

UserDefFile is the same full pathname define by “AuthUserFile”, UserName is the 
name of user you want to create 

If the UserDefFile does not exist and you want to create it, use the command above with 
parameter “-c”.  Otherwise, if the UserDefFile already exists and you want to append new 
entry in, do not use the parameter “-c”. 

After executing the command above, system will prompt you to input and retype the 
password for that user.  Then the UserName/Password peer will be added into the UserFile 
with the Password encrypted. 

  
• Create and edit the GroupDefFile.  In this file, each line defines a group, it starts with 

the GroupName, and followed by a list of UserName as the group members. 
[Format]:  GroupFileLine ::= GroupName ”;” UserName {“ “ UserName} 

 
• Example: 

[---add the following in main configuration file---] 
<Directory “/usr/local/apache2/htdocs/mydir”> 

…… 
AuthName “Protected File, Please input Username & Password” 

  AuthType Basic 
  AuthUserFile  /usr/local/apache2/conf/user.conf 
  AuthGroupFile  /usr/local/apache2/conf/group.conf 
  Require valid-user 
 Satisfy All 
</Directory> 
 
[---defining user and group files---] 
/usr/local/apache2/bin/htpassword  –c  



/usr/local/apache2/conf/user.conf  hellene 
/usr/local/apache2/bin/htpassword  
/usr/local/apache2/conf/user.conf  michael 
/usr/local/apache2/bin/htpassword  
/usr/local/apache2/conf/user.conf  diana 
cat /usr/local/apache2/conf/user.conf 
 hellene: 
 michael: 
 diana: 
vi /usr/local/apache2/conf/group.conf 
 groupA:hellene diana 
 groupB:michael hellene 
 

  [---write the conditions in GAA-API’s policy file---] 
  pre_cond_access_id_user apache “diana,michael” 
  pre_cond_access_id_group apache “groupA” 
 
 
4. Option & Variable Conditions 
 
z Options 
 
In GAA-Apache, we could get the detailed information about Apache Web Server’s per-request 
status through GAA-API’s option.  An Option is expressed in the following formats: 
 Option ::= “#” OptionAuthority “.” OptionType  or 
 Option ::= “#[” OptionAuthority “.” OptionType “]” 
 
Options could be used within the ConditionValue field of every GAA-API condition.  GAA-API 
will translated all definitions of the options to their corresponding OptionValue before the 
checking process of each condition. 
 
Here’s the list of options available for GAA-Apache 
Definition of the Option Description of the OptionValue 
#[apache.remote_host] The domain name of requested client 
#[apache.remote_ip] The IP address of requested client 
#[apache.method] The HTTP method of this request. (GET,POST,HEAD,etc.) 
#[apache.uri] The requested URI  

(eg. http://www.isi.edu/gost/index.html?id=anon) 
#[apache.uri_path] The pathname of requested resource (eg. /gost/index.html) 
#[apache.uri_filename] The filename of requested resource (eg. index.html) 
#[apache.args] The argument list from this request (eg. id=anon) 
#[apache.content_type] The content type of this request (eg. IMAGE/JPEG) 
#[apache.content_encoding] The encoding mechanism used in this request 
#[apache.user] The username that has been authenticated by the client 
#[apache.auth_type] The authority type that last authentication uses 
#[apache.request_line] The request line in HTTP protocol 
#[apache.status_line] The status line in HTTP protocol 
#[apache.conn_id] The connection id that assigned by Apache 
#[apache.request_rec] The request_rec structure used in Apache for this request 
 
Except the option #[apache.request_rec], which is a pointer to the structure “request_rec” that is 
widely used in Apache’s modules (defined in $APACHE_SRC_ROOT/include/httpd.h).  All 
other OptionValues are expressed in ASCII string format. 
 
If the ConitionAuthority of the condition using this option is the same as OptionAuthority.  We 
could also omit the OptionAuthority in the definition of this option.  (Eg. #[apache.conn_id] 
could also be expressed as #conn_id if the ConditionAuthority is “apache”). 



 
z Variables 
 
In GAA-API, we could read and write variables through INI-files.  A Variable is expressed in the 
following formats: 
 Variable ::= “%” [VariableSection “.”] VariableName [“@” VariableFile]   or 
 Variable ::= “%{” [VariableSection “.”] VariableName [“@” VariableFile] “}” 
 
Like the options, variables could also be used within the ConditionValue field of every GAA-API 
condition.  GAA-API will translate all definitions of the variables to their corresponding 
VariableValue before the checking process of each condition.  These VariableValues are 
provided in INI format files.  Moreover, we could also use condition (rr_cond_set_variable) to 
set or update the values of all variables. 
 
Here’s the example of an INI file (/tmp/apache.var). 
 [GAA_PARAMS] 
 securitylevel=red 
 [APACHE] 
 visitcount=15203 
 alertmsg=The request from #[apache.remote_ip] is rejected 
 
Then the Option %{apache.visitcount@/tmp/apache.var} will be translated to value “15203”, and 
%{GAA_PARAMS.securitylevel@/tmp/apache.var} will be translated to value “red”. 
 
Further more, variable could  
• If the VariableFile is not a full path start with “/”, GAA-API will assigned it to the default 

directory “/tmp/” 
• If the definition of VariableFile is absent, the INI-file will be assigned as 

“/tmp/+ConditionAuthority+”.var”.  (The value of ConditionAuthority is got from the 
condition using this variable.) 

• If the definition of VariableSection is absent, GAA-API will assign it to the default section 
“GAA_PARAMS”. 

 
So, in the previous example, the variable %{GAA_PARAMS.securitylevel@/tmp/apache.var} 
could also be expressed as the following: 
 %{securitylevel@apache.var} or 
 %securitylevel  (if the condition using this variable has its ConditionAuthority=”apache”) 
 
z Checking Conditions 
 
In GAA-API, there’re conditions specially used to check the value of options and variables.  
Their format is: 

Condition ::= CheckCondition  ConditionAuthority  CompareEquation 
CompareEquation ::= Option | Variable “=” CompareValueList 

 CompareValueList ::= CompareValue {“;” CompareValue} 
 
We have the following types of CheckCondition available now:  
• pre_cond_check_equal 
Check if the value of Option or Variable equals to the any of the CompareValue 
• pre_cond_check_caseequal 
Check if the value of Option or Variable equals to the any CompareValue with letter case ignored 
• pre_cond_check_token 
Check if any of the CompareValue is included in the value of Option or Variable. 
• pre_cond_check_token 
Check if any of the CompareValue is included in the value of Option or Variable with letter case 
ignored. 
• pre_cond_check_regex 



Check if any of the value of Option or Variable matches the pattern of regular expression defined 
in CompareValue. 
• pre_cond_check_caseregex 
Check if any of the value of Option or Variable matches the pattern of regular expression defined 
in CompareValue with letter case ignored. 
 For a regular expression: 

“*” represents an arbitrary string in any length.  
“?” represents an arbitrary character. 
“[]” represents any character specified in the list. (eg. [1-9,a-z] ) 

 
• pre_cond_numeric_comp 
Check if any of the value of Option or Variable satisfies the numeric equation.  In this condition, 
the value of Option or Variable should be a valid number (either integer or float), or the condition 
will always answers NO to GAA-API. 
 
Moreover, the format of “pre_cond_numeric_comp“ is different from the conditions above 

Condition ::= pre_cond_numeric_comp  ConditionAuthority  CompareEquation2 
CompareEquation2 ::= Option | Variable  CompareOP  ComparedNumericValue 
CompareOP ::= “>” | “<” | “=” | “==” | “!=” | “<>” | “<=” | “>=” 

 
From the definition of CompareOP, we could find that the comparing relationship of less than (<), 
greater than (>), equal to (= or ==), not equal to (!= or <>), less than or equal to (<=) and greater 
than or equal to (>=) are supported by the function.  But the definition of option or variable must 
be put on the left, and the numeric value for comparison must be put on the right. 
 
z Setting Conditions 
 
GAA-API also has conditions to set or update the values of variables (but not for options).  Their 
format is: 

Condition ::= rr_cond_set_variable  ConditionAuthority  SetEquation 
Condition ::= rr_cond_inc_variable | rr_cond_dec_variable  ConditionAuthority  Variable 
SetEquation ::= Variable “=” SetValue 
 

• rr_cond_set_variable 
Update the value of Variable to SetValue. 
• rr_cond_inc_variable 
Increase the value of Variable by 1.  If the original value is not an integer or does not exist, the 
updated value will be set to 1 by default. 
• rr_cond_dec_variable 
Decrease the value of Variable by 1.  If the original value is not an integer or does not exist, the 
updated value will be set to 0 by default. 
 
z Examples 
 
• pre_cond_check_regex  apache  “#uri_filename=A[0-9]*.html; B[0.9]*.htm” 
Check if the option “apache/uri_filename” matches any of the 2 regular expressions. 
 
• rr_cond_set_variable  system  “%{threatlevel.#[remote_ip]}=’under attack’ “ 
Set the variable in section “threadlevel” of INI-file “/tmp/system.var” to the value “under attack”.  
The variable name is dynamically assigned to the value of option “apache/remote_ip”. 
 [eg.] If the remote_ip is 128.9.64.23, then in file /tmp/system.var we will have: 

 [threatlevel] 
  128.9.64.23=under attack 
  
• pre_cond_check_casetoken  apache  “#content_type=%{allowedtype}” 
Check if the token list given by the variable allowedtype is included within the option 
“apache/content_type”.  This variable allowedtype is defined in section “GAA_PARAMS” of 



INI-file “/tmp/apache.var”. 
 
• pre_cond_access_host  apache  “127.0.0.1 OR %{permit_host@/var/apache/def}” 
Check if the request client is 127.0.0.1 or the hosts defined in variable permit_host of section 
“GAA_PARAMS” in INI-file “/var/apache/def” 
 
 
5. Other Conditions 
 
z rr_cond_email_notify 
Send email notification containing the request client’s IP address and username to EmailAddress 
 
[format]: 
 EmailCondition ::= rr_cond_email_notify  ConditionAuthority  EmailAddress 
[example]: 
 rr_cond_email_notify  apache  “on:failure/zhou@isi.edu” 
 
z rr_cond_append_log 
Append a new line into the log file, whose filename is given by the ConditionAuthority 
 
[format]: 
 LogCondition ::= rr_cond_append_log  LogFileName  LogContent 
[example]: 
 rr_cond_append_log  /tmp/apache.log  “%{log_msg_1@/var/logmsg}” 

 
---The content of /var/logmsg--- 
[GAA_PARAMS] 
log_msg_1=Alert/Insecure request from #[apache.remote_ip] 


