Advanced Operating Systems Lecture notes

Dr. Clifford Neuman Dr. Dongho Kim University of Southern California Information Sciences Institute

Copyright © 1995-2004 Chillord Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES DISTIT

CSci555: Advanced Operating Systems

Lecture 13 – November 19, 2004 Scalable Systems (slides by Dr. Neuman)

Dr. Clifford Neuman University of Southern California Information Sciences Institute

Countshir & 1985-2004 (Whited Maumen and Donatho Rim - IDDIVENSITY OF SYSTEMS) (ALIGNOSIA - INDIVENSITY) STEMFOR DISTRICT

Hints for building scalable systems

- · From Lampson:
 - Keep it simple
 - Do one thing at a time
 - If in doubt, leave it out
 - But no simpler than possible
 - Generality can lead to poor performance
 - Make it fast and simple
 - Don't hide power
 - Leave it to the client
 - Keep basic interfaces stable

Copyright © 1995-2004 Cilliord Neuman and Dongho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - BIFORMATION SCIENCES INSTITU

Hints for building scalable systems

- From Lampson:
 - Plan to throw one away
 - Keep secrets
 - Divide and conquer
 - Use a good idea again
 - Handle normal and worst case separately
 - Optimize for the common case
 - Split resources in a fixed way
 - Cache results of expensive operations
 - Use hints

Consists & 1992-2004 Citiford Masses and Donato Elm - IDIVERSITY (B SOTTSTEEN CATEGORIE - IMPORMATION SCHOOLS DISTITITE

Hints for building scalable systems

- From Lampson:
 - When in doubt use brute force
 - Compute in the background
 - Use batch processing
 - Safety first
 - Shed load
 - End-to-end argument
 - Log updates

Copyright © 1995-2004 Clifford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES DISTITUTE

Scale in Distributed Systems - Neuman

 A system is said to be scalable if it can handle the addition of users and resources without suffering a noticeable loss of performance or increase in administrative complexity.

Copyright © 1995-2004 Chillord Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Three dimensions of scale

- Numerical
 - Number of objects, users
- Geographic
 - Where the users and resources are
- Administrative
 - How many organizations own or use different parts of the system

Effects of Scale

- Reliability
 - Autonomy, Redundancy
- System Load
 - Order of growth
- Administration
 - Rate of change
 - Heterogeneity

Techniques - Replication

- · Placement of replicas
 - Reliability
 - Performance
 - Partition
 - What if all in one place
- Consistency
 - Read-only
 - Update to all
 - Primary Site
 - Loose Consistency

Techniques - Distribution

- Placement of servers
 - Reliability
 - Performance
 - Partition
- Finding the right server
 - Hierarchy/iteration
 - Broadcast

Techniques - Caching

- Placement of Caches
 - Multiple places
- Cache consistency
 - Timeouts
 - Hints
 - Callback
 - Snooping
 - Leases

Review for Final

- General
 - Operating Systems Functions
 - Kernel structure microkernels
 - What belongs where
- · Communication models
 - Message Passing
 - RPC
 - Distributed Shared Memory
 - Other Models

Review for Final

- Synchronization Transactions
 - Time Warp
 - Reliable multicast/broadcast
- Naming
 - Purpose of naming mechanisms
 - Approaches to naming
 - Resource Discovery
 - Scale

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTI

Review for Final

- Security Requirements
 - Protection
 - Authentication
 - Authorization (ACL, Capabilities)
 - Scale

Review for Final

- · Distributed File Systems Caching
 - Replication
 - Synchronization _voting,master/slave
 - Distribution
 - Access Mechanism
 - Access Patterns
 - Availability
- · Other file systems
 - Log Structured
 - RAID

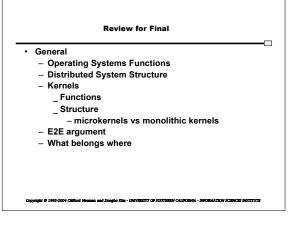
Copyright © 1995-2004 Chillord Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES DE

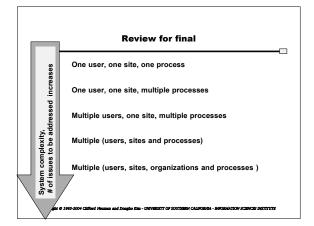
Review for Final

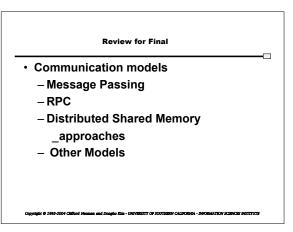
- Case Studies
 - Locus
 - AthenaAndrew
 - _ V
 - HCS
 - Amoeba
 - Mach
- CORBA
- Resource Allocation
- Real time computing
- · Fault tolerant computing

counts to 1995-2004 Citibed Manager and Decade Rim - IDIVERSITY (IS STATISTED CALLED BUT A INDUMATION SCHOOLSE DISTITUTE IN

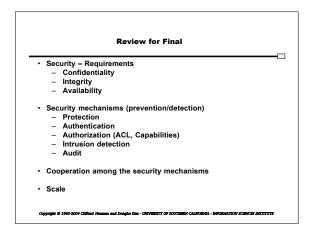
SCALE

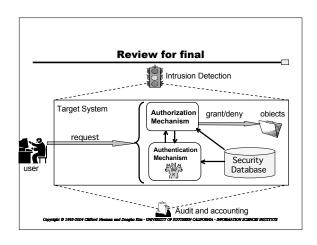

Copyright © 1995-2004 Clifford Neuman and Dougho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITU

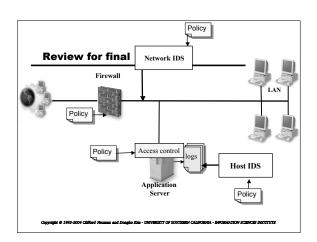

Advanced Operating Systems Lecture notes

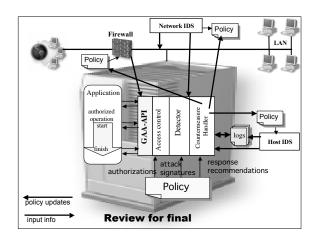

Dr. Clifford Neuman
Dr. Dongho Kim
University of Southern California
Information Sciences Institute

Copyright © 1995-2004 Chifford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCHINGES INSTITUTE

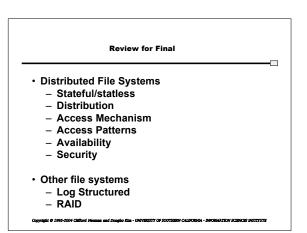

CSCI555: Advanced Operating Systems Lecture 13 part 2 - November 21, 2003 Review slides by Dr. Neuman) Dr. Clifford Neuman Dr. Tatyana Ryutov University of Southern California Information Sciences Institute







Synchronization Transactions (local, distributed, nested) Atomicity Concurrency control in DT Deadlock detection Time Warp Reliable multicast/broadcast Copyright 9 1999-2004 Callbod Heases and Douglo Das - DRYMBORT OF SOUTHBOX CALDRAGES DESTROYS



Distributed File Systems Caching Cache consistency Replication Synchronization voting,master/slave Captigle 9 1999-2004 Callford Hemma and Douglo Date - DRYMENTY OF SOUTHERN CALIFORNIA - RECORNATION SCIENCE RETITUTE

Provided to 1995-2004 Califord Human and Douglo Disc - DRYMENTY OF SOUTHERN CALIFORNIA - BRIGHATION SCIENCES DISTITUTE

Resource Allocation Real time computing Fault tolerant computing Scale