Advanced Operating Systems Lecture notes

Dr. Dongho Kim Dr. Clifford Neuman University of Southern California Information Sciences Institute

Committee & 1995-2004 Chillian Marrian and Donato Pine - INDURENTY OF CONTRIBUTOR OF INDUSTRIAL - NEORINATION CONTRIBUTOR INSTRUMENT

CSci555: Advanced Operating Systems

Lecture 12 - November 12, 2004 Scheduling, Real-Time, Fault Tolerance (slides by Dr. Neuman)

Dr. Dongho Kim University of Southern California Information Sciences Institute

Consists & 1005-2004 Chillian Manager and Donato Fire - IDENTIFIED OF CONTRIBUTOR AS INCOME. INCOME CONTRIBUTOR OF THE CONTRIBU

Administrative

- Mid-term and assignment grades sent to students this week
 - Contact us if you did not receive email with your grades
- Final exam is Thursday December 11, 11AM
- · Research paper due Friday December 5
 - Accepted w/o penalty until December 12
- Please send suggested topics for December 5 lecture to csci555@usc.edu

Copyright © 1995-2004 Cifford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

Scheduling and Real-Time systems

- Scheduling
 - Allocation of resources at a particular point in time to jobs needing those resources, usually according to a defined policy.
- Focus
 - We will focus primarily on the scheduling of processing resources, though similar concepts apply the the scheduling of other resources including network bandwidth, memory, and special devices.

Copyright © 1995-2004 Clifford Neuman and Dougho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Parallel Computing - General Issues

- · Speedup the final measure of success
 - Parallelism vs Concurrency
 - _Actual vs possible by application
 - Granularity
 - _Size of the concurrent tasks
 - Reconfigurability
 - Number of processors
 - Communication cost
 - Preemption v. non-preemption
 - Co-scheduling
 - _Some things better scheduled together

Copyright © 1995-2004 Clifford Neuman and Deegho Eim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Shared Memory Multi-Processing

- Includes use of distributed shared memory, and shared memory multi-processors
- Processors usually tightly coupled to memory, often on a shared bus. Programs communicated through shared memory locations.
- For SMPs cache consistency is the important issue. In DSM it is memory coherence.
 - One level higher in the storage hierarchy
- Examples
 - _Sequent, Encore Multimax, DEC Firefly, Stanford DASH

Copyright © 1995-2004 Chillord Neuman and Dougho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

Where is the best place for scheduling

- Application is in best position to know its own specific scheduling requirements
 - Which threads run best simultaneously
 - Which are on Critical path
 - But Kernel must make sure all play fairly
- **MACH Scheduling**
 - Lets process provide hints to discourage running
 - Possible to hand off processor to another thread
 Makes easier for Kernel to select next thread
 - Allow interleaving of concurrent threads Leaves low level scheduling in Kernel
 - Based on higher level info from application

Scheduler activations

- · User level scheduling of threads
 - Application maintains scheduling queue
- · Kernel allocates threads to tasks
 - Makes upcall to scheduling code in application when thread is blocked for I/O or preempted
 - Only user level involved if blocked for critical section
- · User level will block on kernel calls
 - Kernel returns control to application scheduler

Distributed-Memory Multi-Processing

- · Processors coupled to only part of the memory
 - Direct access only to their own memory
- · Processors interconnected in mesh or network
 - Multiple hops may be necessary
- · May support multiple threads per task
- Typical characteristics
 - Higher communication costs
 - Large number of processors
 - Coarser granularity of tasks
- · Message passing for communication

Prospero Resource Manager

Prospero Resource Manager - 3 entities

- · One or more system managers
 - Each manages subset of resources
 - Allocates resources to jobs as needed
- · A job manager associated with each job
 - Identifies resource requirements of the job
 - Acquires resources from one or more system managers
 - Allocates resources to the job's tasks
- A Node manager on each node
 - Mediates access to the nodes resources

The Prospero Resource Manager

A) User invokes an application program on his workstation. b) The program begins executing on a set of nodes. Tasks perform terminal and file I/O on the user's workstation

Advantages of the PRM

- Scalability
 - System manager does not require detailed job information
 - Multiple system managers
- Job manager selected for application
 - Knows more about job's needs than the system
 - Alternate job managers useful for debugging, performance tuning
- Abstraction
 - Job manager provides a single resource allocator for the job's tasks
 - Single system model

Real time Systems

- · Issues are scheduling and interrupts
 - Must complete task by a particular deadline
 - Examples:
 - _Accepting input from real time sensors
 - _Process control applications
 - _Responding to environmental events
- How does one support real time systems
 - If short deadline, often use a dedicated system
 - Give real time tasks absolute priority
 - Do not support virtual memory
 - _Use early binding

Real time Scheduling

- · To initiate, must specify
 - Deadline
- Estimate/upper-bound on resources
- · System accepts or rejects
 - If accepted, agrees that it can meet the deadline
 - Places job in calendar, blocking out the resources it will need and planning when the resources will be allocated
- · Some systems support priorities
 - But this can violate the RT assumption for already accepted jobs

Consider & 1005-2004 Chillies Manager and Donato Fire - INSURSCITY OF CONTRIBUTOR AND INCOME. INDUSTRIAL INCOME.

Fault-Tolerant systems

- · Failure probabilities
 - Hierarchical, based on lower level probabilities
 - Failure Trees
 - Add probabilities where any failure affects you
 - -Really (1 ((1 lambda)(1 -lambda) (1 - lambda)))
 - Multiply probabilities if all must break
 - _Since numbers are small, this
 - reduces failure rate
 - Both failure and repair rate are important

Copyright © 1995-2004 Cifford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

Making systems fault tolerant

- · Involves masking failure at higher layers
 - Redundancy
 - Error correcting codes
 - Error detection
- Techniques
 - In hardware
 - Groups of servers or processors execute in parallel and provide hot backups
- Space Shuttle Computer Systems exampls
- · RAID example

Copyright © 1995-2004 Chillord Neuman and Dougho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTI

Types of failures

- · Fail stop
 - Signals exception, or detectably does not work
- · Returns wrong results
 - Must decide which component failed
- Byzantine
 - Reports difficult results to different participants
 - Intentional attacks may take this form

Copyright © 1995-2004 Clifford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Recovery

- · Repair of modules must be considered
 - Repair time estimates
- Reconfiguration
 - Allows one to run with diminished capacity
 - Improves fault tolerance (from catastrophic failure)

Copyright © 1993-2004 Chillord Neuman and Dougho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

OS Support for Databases

- Example of OS used for particular applications
- End-to-end argument for applications
 - Much of the common services in OS's are optimized for general applications.
 - For DBMS applications, the DBMS might be in a better position to provide the services
 - _Caching, Consistency, failure protection

Complete & 1005-2004 CHRed Memor and Depute For - INFORMATIVE OF CONTRIBON CALIFORNIA - INFORMATION CONTRIBO