Advanced Operating Systems
Lecture notes

Dr. Dongho Kim

Dr. Tatyana Ryutov

University of Southern California
Information Sciences Institute

Copyright © Neuman and

CSci555: Advanced Operating Systems
Lecture 11 - November 7, 2003

Kernels
(slides by Dr. Neuman and Dr. Obraczka)

Dr. Dongho Kim

Dr. Tatyana Ryutov

University of Southern California
Information Sciences Institute

Copyright © Neuman and

Kernels

» Executes in supervisory mode.

— Privilege to access machine’s
physical resources.

» User-level process: executes in
“user” mode.

— Restricted access to resources.

— Address space boundary
restrictions.

Copyright © Neuman and

Kernel Functions

* Memory management.

— Address space allocation.
—Memory protection.

* Process management.
—Process creation, deletion.
—Scheduling.

* Resource management.
—Device drivers/handlers.

Copyright © Neuman and

System Calls

System call User-level process
to access l
physical Kemel

resources

Physical machine

System call: implemented by hardware interrupt (trap)

which puts processor in supervisory mode and kernel address
space; executes kernel-supplied handler routine (device driver)
executing with interrupts disabled.

Copyright © Neuman and

Kernel and Distributed Systems

* Inter-process communication: RPC,
MP, DSM.

* File systems.

* Some parts may run as user-level
and some as kernel processes.

Copyright © Neuman and

Be or not to be in the kernel?

* Monolithic kernels versus
microkernels.

Copyright © Neuman and

Monolithic kernels

+ Examples: Unix, Sprite.
» “Kernel does it all” approach.

+ Based on argument that inside
kernel, processes execute more
efficiently and securely.

* Problems: massive, non-modaular,
hard to maintain and extend.

Copyright © Neuman and

Microkernels

» Take as much out of the kernel as possible.
* Minimalist approach.
* Modular and small.

— 10KBytes -> several hundred Kbytes.

— Easier to port, maintain and extend.

— No fixed definition of what should be in the
kernel.

— Typically process management, memory
management, IPC.

Copyright © Neuman and

Micro- versus Monolithic Kernels

&
o> ®| T

‘ Monolithic kernel Microkernel ‘

Q Services (file, network). ‘

[]| Kernel code and data

Copyright © Neuman and

Microkernel

{1

The V Distributed System

Application . Services dynamically

loaded at appropriate
servers.

OS Services

Microkernel . Some microkernels

run service processes
Hardware only @ user space;
others allow them to be
loaded into either
kernel or user space.

Copyright © Neuman and

» Stanford (early 80’s) by Cheriton et al.

+ Distributed OS designed to manage cluster of
workstations connected by LAN.

+ System structure:

_ Relatively small kernel common to all
machines.

_Service modules: e.g., file service.

_ Run-time libraries: language support
(Pascal I/0, C stdio)

_ Commands and applications.

Copyright © Neuman and

V’s Design Goals

* High performance communication.
— Considered the most critical service.
__Efficient file transfer.

— “Uniform” protocol approach for open
system interconnection.

_Interconnect heterogeneous nodes.

— “Protocols, not software, define the
system”.

Copyright © Neuman and

The V Kernel

« Small kernel with basic protocols and
services.

* Precursor to microkernel approach.
» Kernel as a “software backplane”.

— Provides “slots” into which
higher-level OS services can be
“plugged”.

Copyright © Neuman and

Distributed Kernel

» Separate copies of kernel
executes on each node.

* They cooperate to provide
“single system” abstraction.

 Services: address spaces,
LWP, and IPC.

Copyright © Neuman and

V’s IPC Support

« Fast and efficient transport-level service.
— Support for RPC and file transfer.
« V’s IPC is RPC-like.
— Send primitive: send + receive.
_ Client sends request and blocks waiting for
reply.
_ Server: processes request serially or
concurrently.
_ Server response is both ACK and flow control.
— It authorizes new request.
— Simplifies transport protocol.

Copyright © Neuman and

V’s IPC

Client
application Servet Server

Stub Stub Stub
Eﬂetwork IPC| T

VMTP Traffic

Support for short, fixed size messages of 32 bytes with optional
data segment of up to 16 Kbytes; simplifies buffering, transmission,
and processing.

Copyright © Neuman and

VMTP (1)

» Transport protocol implemented in V.

» Optimized for request-response
interactions.

— No connection setup/teardown.
— Response ACKs request.
— Server maintains state about clients.

_ Duplicate suppression, caching of
client information (e.g.,
authentication information).

Copyright © Neuman and

VMTP (2)

* Support for group communication.
— Multicast.

— Process groups (e.g., group of file
servers).

_ldentified by group id.

_Operations: send to group,

receive multiple responses to a
request.

Copyright © Neuman and

VMTP Optimizations

» Template of VMTP header + some
fields initialized in process
descriptor.

— Less overhead when sending
message.

+ Short, fixed-size messages carried in
the VMTP header: efficiency.

Copyright © Neuman and

V Kernel: Other Functions

+ Time, process, memory, and device
management.

« Each implemented by separate

kernel module (or server) replicated
in each node.

— Communicate via IPC.

— Examples: kernel process server
creates processes, kernel disk
server reads disk blocks.

Copyright © Neuman and

Time

* Kernel keeps current time of day
(GMT).

* Processes can get(time), set(time),
delay(time), wake up.

* Time synchronization among nodes:
outside V kernel using IPC.

Copyright © Neuman and

Process Management
< Create, destroy, schedule, migrate processes.
« Process management optimization.

— Process initiation separated from address
space allocation.

_ Process initiation = allocating/initializing
new process descriptor.

— Simplifies process termination (fewer kernel-
level resources to reclaim).

— Simplifies process scheduling: simple priority
based scheduler; 2nd. level outside kernel.

Copyright © Neuman and

Memory Management 1

Protect kernel and other processes from

corruption and unauthorized access.

Address space: ranges of addresses

(regions).

— Bound to an open file (UIO like file
descriptor).

— Page fault references a portion of a region
that is not in memory.

— Kernel performs binding, caching, and
consistency services.

Copyright © Neuman and

Memory Management 2

 Virtual memory management: demand
paging.
— Pages are brought in from disk as
needed.

— Update kernel page tables.
» Consistency:

— Same block may be stored in multiple
caches simultaneously.

— Make sure they are kept consistent.

Copyright © Neuman and

Device Management

» Supports access to devices: disk, network
interface, mouse, keyboard, serial line.
* Uniform 1/O interface (UlO).
— Devices are UIO objects (like file descriptors).
— Example: mouse appears as an open file
containing x & y coordinates & button positions.

— Kernel mouse driver performs polling and interrupt
handling.

— But events associated with mouse changes
(moving cursor) performed outside kernel.

Copyright © Neuman and

More on V...

» Paper talks about other V functions
implemented using kernel services.

— File server.
— Printer, window, pipe.
» Paper also talks about classes of

applications that V targets with
examples.

Copyright © Neuman and

The X-Kernel

UofArizona, 1990.

Like V, communication services are critical.

+ Machines communicating through internet.

— Heterogeneity!

— The more protocols on user’s machine, the
more resources are accessible.

+ The x-kernel philosophy: provide infrastructure to
facilitate protocol implementation.

Copyright © Neuman and

Virtual Protocols

* The x-kernel provide library of protocols.

— Combined differently to access different
resources.

— Example:

_If communication between processes
on the same machine, no need for
any networking code.

_If on the same LAN, IP layer skipped.

Copyright © Neuman and

The X-Kernel : Process and Memo%

« ability to pass control and data efficiently between
the kernel and user programs
— user data is accessible because kernel
process executes in same address space

» kernel process -> user process

— sets up user stack

— pushes arguments

— use user-stack

— access only user data

« kernel -> user (245 usec), user -> kernel 20 usec on SUN
3175

Copyright © Neuman and

Communication Manager

« Obiject-oriented infrastructure for implementing
and composing protocols.

« Common protocol interface.

« 2 abstract communication objects:
— Protocols and sessions.
— Example: TCP protocol object.

_ TCP open operation: creates a TCP session.

_ TCP protocol object: switches each
incoming message to one of the TCP
session objects.

_ Operations: demux, push, pop.

Copyright © Neuman and

X-kernel Configuration

o O
!) Q

— | Message
O Session Object
JRP———— e L)

Message Manager

« Defines single abstract data type: message.

— Manipulation of headers, data, and trailers that
compose network transmission units.

— Well-defined set of operations:

_ Add headers and trailers, strip headers and
trailers, fragment/reassemble.
— Efficient implementation using directed acyclic
graphs of buffers to represent messages +
stack data structure to avoid data copying.

Copyright © Neuman and

Mach

* CMU (mid 80’s).
* Mach is a microkernel, not a complete OS.
* Design goals:

— As little as possible in the kernel.

— Portability: most kernl code is machine
independent.

— Extensibility: new features can be
implemented/tested alongside existing
versions.

— Security: minimal kernel specified and
implemented in more secure way.

Copyright © Neuman and

Mach Features

* OSs as Mach applications.
* Mach functionality:
— Task and thread management.
- IPC.
— Memory management.
— Device management.

Copyright © Neuman and

Mach IPC

« Threads communicate using ports.
* Resources are identified with ports.

« To access resource, message is sent to
corresponding port.

— Ports not directly accessible to programmer.

— Need handles to “port rights”, or capabilities
(right to send/receive message to/from ports).
« Servers: manage several resources, or ports.

Copyright © Neuman and

Mach: ports

* process port is used to communicate with the
kernel.

* bootstrap port is used for initialization when a
process starts up.

*» exception port is used to report exceptions
caused by the process.

* registered ports used to provide a way for the
process to communicate with standard system
servers.

Copyright © Neuman and

Protection

* Protecting resources against illegal
access:

— Protecting port against illegal
sends.

* Protection through capabilities.
— Kernel controls port capability
acquisition.
— Different from Amoeba.

Copyright © Neuman and

Capabilities 1
« Capability to a port has field specifying port access rights
for the task that holds the capability.

— Send rights: threads belonging to task possessing
capability can send message to port.

— Send-once rights: allows at most 1 message to be sent;
after that, right is revoked by kernel.

— Receive rights: allows task to receive message from
port’s queue.
_ At most 1 task, may have receive rights at any time.
_ More than 1 task may have sned/send-once rights.

{1

Copyright © Neuman and

Capabilities 2

» At task creation:

— Task given bootstrap port right:
send right to obtain services of
other tasks.

— Task threads acquire further port
rights either by creating ports or
receiving port rights.

Copyright © Neuman and

Port Name Space

Task T (user level) Kernel

System call
referring to
right on port i

—+— Port
. Mach’s port rights stored i’s

inside kernel. rights.

. Tasks refer to port rights
using local id’s valid in the task’s
local port name space.

. Problem: kernel gets
involved whenever ports are

referenced.
Copyright © Neuman and

Communication Model

* Message passing.
* Messages: fixed-size headers +
variable-length list of data items.

Pointer to out-of
line data

T

lIn-line data

‘ Header ‘ T‘ Port rights‘ T

Header: destination port, reply port, type of operation.

T: type of information.

Port rights: send rights: receiver acquires send rights to port.
Receive rights: automatically revoked in sending task.

Copyright © Neuman and

Ports

* Mach port has message queue.

— Task with receive rights can set port’s
queue size dynamically: flow control.

— If port’s queue is full, sending thread is
blocked; send-once sender never
blocks.

» System calls:
— Send message to kernel port.
— Assigned at task creation time.

Task and Thread Management

Copyright © Neuman and

» Task: execution environment (address
space).
* Threads within task perform action.
» Task resources: address space, threads,
port rights.
* PAPER:
—How Mach microkernel can be used
to implement other OSs.
—Performace numbers comparing 4.3
BSD on top of Mach and Unix
kernels.

Copyright © Neuman and

