Advanced Operating Systems Lecture notes

Dr. Dongho Kim Dr. Tatyana Ryutov University of Southern California Information Sciences Institute

Copyright © 1995-2004 Chifford Neuman and Dongho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTI

CSci555: Advanced Operating Systems Lecture 11 – November 7, 2003

Kernels (slides by Dr. Neuman and Dr. Obraczka)

Dr. Dongho Kim Dr. Tatyana Ryutov University of Southern California Information Sciences Institute

Copyright © 1995-2004 Citiford Neuman and Dooglo Kim - UNIVERSITY OF SQUITHERN CALIFORNIA - DIFFORMATION SCHNORS INSTITUTE

Kernels

- Executes in supervisory mode.
 - Privilege to access machine's physical resources.
- User-level process: executes in "user" mode.
 - Restricted access to resources.
 - Address space boundary restrictions.

Conversely 2 1995-2004 Chilled Names and Donales Film , IDSURESTLY OF SUPPLIES CATEGORISE , INFORMATION STREETS DISTYTTIFE

Kernel Functions

- · Memory management.
 - Address space allocation.
 - Memory protection.
- · Process management.
 - Process creation, deletion.
 - Scheduling.
- · Resource management.
 - Device drivers/handlers.

Convolete © 1995-2004 Citibar Nauman and Donato Elm., INSURENTY OF STITTERED CALIFORNIA. DIFFEMATION STRATES INSTITTITE

System Calls

System call	User-level process	
to access physical	Kernel	
resources	Kemer	

Physical machine

System call: implemented by hardware interrupt (trap) which puts processor in supervisory mode and kernel address space; executes kernel-supplied handler routine (device driver) executing with interrupts disabled.

Conversible 2: 1995-2004 (William Marmon and Donelin Elm., IDSI/MESTRY OF STITTMEN CATRICIPAL A. INFORMATION STREETS INSTITUTE.

Kernel and Distributed Systems

- Inter-process communication: RPC, MP, DSM.
- File systems.
- Some parts may run as user-level and some as kernel processes.

Copyright © 1995-2004 Chilord Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - REPORMATION SCIENCES INSTITUTE

Be or not to be in the kernel?

Monolithic kernels versus microkernels.

Copyright © 1995-2004 Chifford Neuman and Dongho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INST

Monolithic kernels

- · Examples: Unix, Sprite.
- · "Kernel does it all" approach.
- Based on argument that inside kernel, processes execute more efficiently and securely.
- Problems: massive, non-modular, hard to maintain and extend.

Microkernels

- · Take as much out of the kernel as possible.
- · Minimalist approach.
- · Modular and small.
 - 10KBytes -> several hundred Kbytes.
 - Easier to port, maintain and extend.
 - No fixed definition of what should be in the kernel.
 - Typically process management, memory management, IPC.

Convision & 1994-2004 Chillon Manage and Donato Rim - IDM/CENTY OF SOUTHERN CALIFORNIA - INSCRIBATION STEEL'S INSTITUTE

Micro- versus Monolithic Kernels S4 S1 S4 S3 Monolithic kernel Microkernel Services (file, network). Kernel code and data Cognight © 1995-2004 CRITICAL REGISTRATE SCRITTERS

Microkernel

Application

OS Services

Microkernel

Hardware

• Services dynamically loaded at appropriate

• Some microkernels run service processes only @ user space; others allow them to be loaded into either kernel or user space.

Conversity (S. 1995-2004 Chilling Marmon and Donato Sim., TREPRESTY OF STITTINGS CATTERING., INCOMESTIVE STREETS INCOMESTIVE

The V Distributed System

- · Stanford (early 80's) by Cheriton et al.
- Distributed OS designed to manage cluster of workstations connected by LAN.
- · System structure:
 - _Relatively small kernel common to all machines.
 - _Service modules: e.g., file service.
 - _Run-time libraries: language support (Pascal I/O, C stdio)
 - _Commands and applications.

Consider A 1006-2004 (Wheel Norman and Dearths Fire - INSTRUMENTY OF CONTROLS AND INSTRUME - DURING STATES OF THE CONTROL OF T

V's Design Goals

- · High performance communication.
 - Considered the most critical service.
 Efficient file transfer.
 - "Uniform" protocol approach for open system interconnection.
 - Interconnect heterogeneous nodes.
 - "Protocols, not software, define the system".

Copyright © 1995-2004 Chifford Neuman and Dongho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

The V Kernel

- Small kernel with basic protocols and services.
- · Precursor to microkernel approach.
- · Kernel as a "software backplane".
 - Provides "slots" into which higher-level OS services can be "plugged".

Distributed Kernel

- Separate copies of kernel executes on each node.
- They cooperate to provide "single system" abstraction.
- Services: address spaces, LWP, and IPC.

V's IPC Support

- · Fast and efficient transport-level service.
 - Support for RPC and file transfer.
- V's IPC is RPC-like.
 - Send primitive: send + receive.
 - _ Client sends request and blocks waiting for reply.
 - Server: processes request serially or concurrently.
 - _ Server response is both ACK and flow control.
 - It authorizes new request.
 - Simplifies transport protocol.

Convoice © 1995-2004 Citition National and Donato Eim., INSURENTY OF STITTERS CALIFORNIA. DISTRIBUTION STRATES INSTITTITES

Client application Stub Local IPC Network IPC VMTP Traffic

Support for short, fixed size messages of 32 bytes with optional data segment of up to 16 Kbytes; simplifies buffering, transmission, and processing.

Copyright © 1995-2004 Chillord Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

VMTP (1)

- Transport protocol implemented in V.
- Optimized for request-response interactions.
 - No connection setup/teardown.
 - Response ACKs request.
 - Server maintains state about clients.
 - _Duplicate suppression, caching of client information (e.g., authentication information).

Copyright © 1995-2004 Clifford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

VMTP (2)

- · Support for group communication.
 - Multicast.
 - Process groups (e.g., group of file servers).
 - _Identified by group id.
 - _Operations: send to group, receive multiple responses to a request.

Convisit © 1995-2004 Clifford Neuman and Doneto Elm - UNIVERSITY OF SOUTHWAY CAUDIONIA - INFORMATION SCIRRUSS INSTITU

VMTP Optimizations

- Template of VMTP header + some fields initialized in process descriptor.
 - Less overhead when sending message.
- Short, fixed-size messages carried in the VMTP header: efficiency.

Copyright © 1995-2004 Citiford Neuman and Dongho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

V Kernel: Other Functions

- Time, process, memory, and device management.
- Each implemented by separate kernel module (or server) replicated in each node.
 - Communicate via IPC.
 - Examples: kernel process server creates processes, kernel disk server reads disk blocks.

Time

- Kernel keeps current time of day (GMT).
- Processes can get(time), set(time), delay(time), wake up.
- Time synchronization among nodes: outside V kernel using IPC.

Copyright © 1995-2004 Chiford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Process Management

- · Create, destroy, schedule, migrate processes.
- · Process management optimization.
 - Process initiation separated from address space allocation.
 - _Process initiation = allocating/initializing new process descriptor.
 - Simplifies process termination (fewer kernellevel resources to reclaim).
 - Simplifies process scheduling: simple priority based scheduler; 2nd. level outside kernel.

Consider & 1985-2004 Chilled Museum and Dennis Fire - IDSTRICTORY OF CATRODRAY - INDENIATION - INDENIATION CATRODRAY - INDENIA

Memory Management 1

- Protect kernel and other processes from corruption and unauthorized access.
- Address space: ranges of addresses (regions).
 - Bound to an open file (UIO like file descriptor).
 - Page fault references a portion of a region that is not in memory.
 - Kernel performs binding, caching, and consistency services.

Consider & 1005-0004 Chilled Marries and Dearles Fire - INSTRUCTORY OF CONTROLLY CASTERDARY - INSTRUCTORY - INSTRUCT

Memory Management 2

- · Virtual memory management: demand paging.
 - Pages are brought in from disk as needed.
 - Update kernel page tables.
- Consistency:
 - Same block may be stored in multiple caches simultaneously.
 - Make sure they are kept consistent.

Device Management

- Supports access to devices: disk, network interface, mouse, keyboard, serial line.
- Uniform I/O interface (UIO).
 - Devices are UIO objects (like file descriptors).
 - Example: mouse appears as an open file containing x & y coordinates & button positions.
 - Kernel mouse driver performs polling and interrupt handling.
 - But events associated with mouse changes (moving cursor) performed outside kernel.

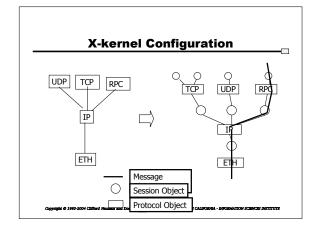
More on V...

- · Paper talks about other V functions implemented using kernel services.
 - File server.
 - Printer, window, pipe.
- · Paper also talks about classes of applications that V targets with examples.

The X-Kernel

- · UofArizona, 1990.
- · Like V, communication services are critical.
- · Machines communicating through internet.
 - Heterogeneity!
 - The more protocols on user's machine, the more resources are accessible.
- The x-kernel philosophy: provide infrastructure to facilitate protocol implementation.

Virtual Protocols


- · The x-kernel provide library of protocols.
 - Combined differently to access different resources.
 - Example:
 - _If communication between processes on the same machine, no need for any networking code.
 - If on the same LAN, IP layer skipped.

The X-Kernel : Process and Memory

- ability to pass control and data efficiently between the kernel and user programs
 - user data is accessible because kernel process executes in same address space
- kernel process -> user process
 - sets up user stack
 - pushes arguments
 - use user-stack access only user data
- kernel -> user (245 usec), user -> kernel 20 usec on SUN 3/75

Communication Manager

- Object-oriented infrastructure for implementing and composing protocols.
- Common protocol interface.
- 2 abstract communication objects:
 - Protocols and sessions.
 - Example: TCP protocol object.
 - _ TCP open operation: creates a TCP session.
 - TCP protocol object: switches each incoming message to one of the TCP session objects.
 - _ Operations: demux, push, pop.

Message Manager

- · Defines single abstract data type: message.
 - Manipulation of headers, data, and trailers that compose network transmission units.
 - Well-defined set of operations:
 - _ Add headers and trailers, strip headers and trailers, fragment/reassemble.
 - Efficient implementation using directed acyclic graphs of buffers to represent messages + stack data structure to avoid data copying.

Conscient & 1995-2004 Chillian Mannes and Donato Firm . IDENTIFICATE OF SAFFERING CALIFORNIA . INCOMMETTER STREETS INSTITUTE.

Mach

- CMU (mid 80's).
- Mach is a microkernel, not a complete OS.
- · Design goals:
 - As little as possible in the kernel.
 - Portability: most kernl code is machine independent.
 - Extensibility: new features can be implemented/tested alongside existing versions.
 - Security: minimal kernel specified and implemented in more secure way.

Copyright © 1995-2004 Chiford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Mach Features

- · OSs as Mach applications.
- · Mach functionality:
 - Task and thread management.
 - IPC.
 - Memory management.
 - Device management.

Copyright © 1995-2004 Childred Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCHINGES INSTITUTE

Mach IPC

- · Threads communicate using ports.
- · Resources are identified with ports.
- To access resource, message is sent to corresponding port.
 - Ports not directly accessible to programmer.
 - Need handles to "port rights", or capabilities (right to send/receive message to/from ports).
- · Servers: manage several resources, or ports.

Copyright © 1995-2004 Citiford Neuman and Dougho Rim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

Mach: ports

- process port is used to communicate with the kernel.
- bootstrap port is used for initialization when a process starts up.
- · exception port is used to report exceptions caused by the process.
- registered ports used to provide a way for the process to communicate with standard system servers.

Protection

- · Protecting resources against illegal access:
 - Protecting port against illegal sends.
- Protection through capabilities.
 - Kernel controls port capability acquisition.
 - Different from Amoeba.

Capabilities 1

- Capability to a port has field specifying port access rights for the task that holds the capability.
 - Send rights: threads belonging to task possessing capability can send message to port.
 - Send-once rights: allows at most 1 message to be sent; after that, right is revoked by kernel.
 - Receive rights: allows task to receive message from port's queue.
 - _ At most 1 task, may have receive rights at any time.
 - More than 1 task may have sned/send-once rights.

Capabilities 2

- · At task creation:
 - Task given bootstrap port right: send right to obtain services of other tasks.
 - Task threads acquire further port rights either by creating ports or receiving port rights.

Port Name Space Task T (user level) Kernel System call referring to right on port i Port . Mach's port rights stored i's inside kernel. rights . Tasks refer to port rights using local id's valid in the task's . Problem: kernel gets local port name space. involved whenever ports are referenced.

Communication Model

- · Message passing.
- · Messages: fixed-size headers + variable-length list of data items.

Pointer to out-of T Port rights T In-line data T

Header: destination port, reply port, type of operation. T: type of information.

Port rights: send rights: receiver acquires send rights to port. Receive rights: automatically revoked in sending task.

Ports

- · Mach port has message queue.
 - Task with receive rights can set port's queue size dynamically: flow control.
 - If port's queue is full, sending thread is blocked; send-once sender never blocks.
- · System calls:
 - Send message to kernel port.
 - Assigned at task creation time.

Task and Thread Management

- Task: execution environment (address space).
- Threads within task perform action.
- Task resources: address space, threads, port rights.
- PAPER:
 - How Mach microkernel can be used to implement other OSs.
 - Performace numbers comparing 4.3 BSD on top of Mach and Unix kernels.

Copyright © 1995-2004 Clifford Neuman and Dougho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT