
1

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Advanced Operating Systems
Lecture notes

Dr. Dongho Kim

Dr. Tatyana Ryutov

University of Southern California

Information Sciences Institute

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

CSci555: Advanced Operating Systems
Lecture 11 – November 7, 2003

Kernels
(slides by Dr. Neuman and Dr. Obraczka)

Dr. Dongho Kim

Dr. Tatyana Ryutov

University of Southern California

Information Sciences Institute

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Kernels

• Executes in supervisory mode.
– Privilege to access machine’s

physical resources.
• User-level process: executes in

“user” mode.
– Restricted access to resources.
– Address space boundary

restrictions.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Kernel Functions

• Memory management.
– Address space allocation.
– Memory protection.

• Process management.
– Process creation, deletion.
– Scheduling.

• Resource management.
– Device drivers/handlers.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

System Calls

User-level process

Kernel

Physical machine

System call
to access
physical
resources

System call: implemented by hardware interrupt (trap)
which puts processor in supervisory mode and kernel address
space; executes kernel-supplied handler routine (device driver)
executing with interrupts disabled.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Kernel and Distributed Systems

• Inter-process communication: RPC,
MP, DSM.

• File systems.

• Some parts may run as user-level
and some as kernel processes.

2

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Be or not to be in the kernel?

• Monolithic kernels versus
microkernels.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Monolithic kernels

• Examples: Unix, Sprite.

• “Kernel does it all” approach.

• Based on argument that inside
kernel, processes execute more
efficiently and securely.

• Problems: massive, non-modular,
hard to maintain and extend.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Microkernels

• Take as much out of the kernel as possible.
• Minimalist approach.
• Modular and small.

– 10KBytes -> several hundred Kbytes.
– Easier to port, maintain and extend.
– No fixed definition of what should be in the

kernel.
– Typically process management, memory

management, IPC.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Micro- versus Monolithic Kernels

S1 S4 S3

S4

S1 S4S2 S3

Monolithic kernel Microkernel

Services (file, network).

Kernel code and data

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Microkernel

Application

OS Services

Microkernel

Hardware

. Services dynamically
loaded at appropriate
servers.

. Some microkernels
run service processes
only @ user space;
others allow them to be
loaded into either
kernel or user space.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

The V Distributed System

• Stanford (early 80’s) by Cheriton et al.
• Distributed OS designed to manage cluster of

workstations connected by LAN.
• System structure:

_Relatively small kernel common to all
machines.

_Service modules: e.g., file service.
_Run-time libraries: language support

(Pascal I/O, C stdio)
_Commands and applications.

3

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

V’s Design Goals

• High performance communication.

– Considered the most critical service.

_Efficient file transfer.

– “Uniform” protocol approach for open
system interconnection.

_ Interconnect heterogeneous nodes.

– “Protocols, not software, define the
system”.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

The V Kernel

• Small kernel with basic protocols and
services.

• Precursor to microkernel approach.

• Kernel as a “software backplane”.

– Provides “slots” into which
higher-level OS services can be
“plugged”.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Kernel

• Separate copies of kernel
executes on each node.

• They cooperate to provide
 “single system” abstraction.

• Services: address spaces,
LWP, and IPC.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

V’s IPC Support

• Fast and efficient transport-level service.
– Support for RPC and file transfer.

• V’s IPC is RPC-like.
– Send primitive: send + receive.

_ Client sends request and blocks waiting for
reply.

_ Server: processes request serially or
concurrently.

_ Server response is both ACK and flow control.
– It authorizes new request.
– Simplifies transport protocol.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

V’s IPC

Client
application
Stub

Server

Stub
Server

Stub
Local IPC

Network IPC

VMTP Traffic

Support for short, fixed size messages of 32 bytes with optional
data segment of up to 16 Kbytes; simplifies buffering, transmission,
and processing.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

VMTP (1)

• Transport protocol implemented in V.

• Optimized for request-response
interactions.

– No connection setup/teardown.

– Response ACKs request.

– Server maintains state about clients.

_Duplicate suppression, caching of
client information (e.g.,
authentication information).

4

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

VMTP (2)

• Support for group communication.
– Multicast.
– Process groups (e.g., group of file

servers).
_Identified by group id.
_Operations: send to group,

receive multiple responses to a
request.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

VMTP Optimizations

• Template of VMTP header + some
fields initialized in process
descriptor.

– Less overhead when sending
message.

• Short, fixed-size messages carried in
the VMTP header: efficiency.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

V Kernel: Other Functions

• Time, process, memory, and device
management.

• Each implemented by separate
kernel module (or server) replicated
in each node.
– Communicate via IPC.
– Examples: kernel process server

creates processes, kernel disk
server reads disk blocks.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Time

• Kernel keeps current time of day
(GMT).

• Processes can get(time), set(time),
delay(time), wake up.

• Time synchronization among nodes:
outside V kernel using IPC.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Process Management
• Create, destroy, schedule, migrate processes.

• Process management optimization.

– Process initiation separated from address
space allocation.

_Process initiation = allocating/initializing
new process descriptor.

– Simplifies process termination (fewer kernel-
level resources to reclaim).

– Simplifies process scheduling: simple priority
based scheduler; 2nd. level outside kernel.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Memory Management 1

• Protect kernel and other processes from
corruption and unauthorized access.

• Address space: ranges of addresses
(regions).
– Bound to an open file (UIO like file

descriptor).
– Page fault references a portion of a region

that is not in memory.
– Kernel performs binding, caching, and

consistency services.

5

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Memory Management 2

• Virtual memory management: demand
paging.

– Pages are brought in from disk as
needed.

– Update kernel page tables.

• Consistency:

– Same block may be stored in multiple
caches simultaneously.

– Make sure they are kept consistent.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Device Management

• Supports access to devices: disk, network
interface, mouse, keyboard, serial line.

• Uniform I/O interface (UIO).
– Devices are UIO objects (like file descriptors).

– Example: mouse appears as an open file
containing x & y coordinates & button positions.

– Kernel mouse driver performs polling and interrupt
handling.

– But events associated with mouse changes
(moving cursor) performed outside kernel.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

More on V...

• Paper talks about other V functions
implemented using kernel services.

– File server.

– Printer, window, pipe.

• Paper also talks about classes of
applications that V targets with
examples.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

The X-Kernel
• UofArizona, 1990.

• Like V, communication services are critical.
• Machines communicating through internet.

– Heterogeneity!

– The more protocols on user’s machine, the
more resources are accessible.

• The x-kernel philosophy: provide infrastructure to
facilitate protocol implementation.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Virtual Protocols

• The x-kernel provide library of protocols.

– Combined differently to access different
resources.

– Example:

_ If communication between processes
on the same machine, no need for
any networking code.

_ If on the same LAN, IP layer skipped.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

The X-Kernel : Process and Memory

• ability to pass control and data efficiently between
the kernel and user programs

– user data is accessible because kernel
process executes in same address space

• kernel process -> user process
– sets up user stack
– pushes arguments
– use user-stack
– access only user data

• kernel -> user (245 usec), user -> kernel 20 usec on SUN
3/75

6

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Communication Manager

• Object-oriented infrastructure for implementing
and composing protocols.

• Common protocol interface.
• 2 abstract communication objects:

– Protocols and sessions.
– Example: TCP protocol object.

_ TCP open operation: creates a TCP session.
_ TCP protocol object: switches each

incoming message to one of the TCP
session objects.

_ Operations: demux, push, pop.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

X-kernel Configuration

TCPUDP RPC

IP

ETH

TCP UDP

ETH

Message
ObjectSession Object

Protocol Object

IP

RPC

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Message Manager

• Defines single abstract data type: message.

– Manipulation of headers, data, and trailers that
compose network transmission units.

– Well-defined set of operations:

_ Add headers and trailers, strip headers and
trailers, fragment/reassemble.

– Efficient implementation using directed acyclic
graphs of buffers to represent messages +
stack data structure to avoid data copying.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Mach
• CMU (mid 80’s).
• Mach is a microkernel, not a complete OS.
• Design goals:

– As little as possible in the kernel.
– Portability: most kernl code is machine

independent.
– Extensibility: new features can be

implemented/tested alongside existing
versions.

– Security: minimal kernel specified and
implemented in more secure way.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Mach Features

• OSs as Mach applications.

• Mach functionality:

– Task and thread management.

– IPC.

– Memory management.

– Device management.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Mach IPC

• Threads communicate using ports.

• Resources are identified with ports.

• To access resource, message is sent to
corresponding port.

– Ports not directly accessible to programmer.

– Need handles to “port rights”, or capabilities
(right to send/receive message to/from ports).

• Servers: manage several resources, or ports.

7

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Mach: ports

• process port is used to communicate with the
kernel.

• bootstrap port is used for initialization when a
process starts up.

• exception port is used to report exceptions
caused by the process.

• registered ports used to provide a way for the
process to communicate with standard system
servers.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Protection

• Protecting resources against illegal
access:
– Protecting port against illegal

sends.
• Protection through capabilities.

– Kernel controls port capability
acquisition.

– Different from Amoeba.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Capabilities 1
• Capability to a port has field specifying port access rights

for the task that holds the capability.

– Send rights: threads belonging to task possessing
capability can send message to port.

– Send-once rights: allows at most 1 message to be sent;
after that, right is revoked by kernel.

– Receive rights: allows task to receive message from
port’s queue.

_ At most 1 task, may have receive rights at any time.
_ More than 1 task may have sned/send-once rights.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Capabilities 2

• At task creation:

– Task given bootstrap port right:
send right to obtain services of
other tasks.

– Task threads acquire further port
rights either by creating ports or
receiving port rights.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Port Name Space

System call
referring to

right on port i

Task T (user level) Kernel

i

Port
i’s
rights.

. Mach’s port rights stored
inside kernel.
. Tasks refer to port rights
using local id’s valid in the task’s
local port name space. . Problem: kernel gets

involved whenever ports are
referenced.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Communication Model

• Message passing.

• Messages: fixed-size headers +
variable-length list of data items.

Header T Port rights T In-line data T
Pointer to out-of
line data

Header: destination port, reply port, type of operation.
T: type of information.
Port rights: send rights: receiver acquires send rights to port.
Receive rights: automatically revoked in sending task.

8

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Ports

• Mach port has message queue.

– Task with receive rights can set port’s
queue size dynamically: flow control.

– If port’s queue is full, sending thread is
blocked; send-once sender never
blocks.

• System calls:

– Send message to kernel port.

– Assigned at task creation time.

Copyright © 1995-2004 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Task and Thread Management

• Task: execution environment (address
space).

• Threads within task perform action.
• Task resources: address space, threads,

port rights.
• PAPER:

– How Mach microkernel can be used
to implement other OSs.

– Performace numbers comparing 4.3
BSD on top of Mach and Unix
kernels.

