
1

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Advanced Operating Systems
Lecture notes

Dr. Dongho Kim

Dr. Tatyana Ryutov

University of Southern California

Information Sciences Institute

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Continuation of

CSci555: Advanced Operating Systems
Lecture 8 - October 17, 2003

File System - Performance
(slides by Dr. Katia Obraczka)

Dr. Clifford Neuman

Dr. Tatyana Ryutov

University of Southern California

Information Sciences Institute

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Outline

• Leases (covered last class)
– Time-based cache consistency

protocol.

• Log Structured File System and RAID.
– FS performance from the storage

management point of view.

• Locus system

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Free Space Management

• Goal: maintain large, contiguous free chunks of
disk space for writing data.

• Problem: fragmentation.

• Approaches:
– Thread around used blocks.

_ Skip over active blocks and thread log
through free extents.

– Copying.

_ Active data copied in compacted form at head of log.

_ Generates contiguous free space.

_ But, expensive!

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Free Space Management in LFS

• Divide disk into large, fixed-size segments.

– Segment size is large enough so that
transfer time (for read/write) >>> seek
time.

• Hybrid approach.

– Combination of threading and copying.

– Copying: segment cleaning.

– Threading between segments.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Segment Cleaning

• Process of copying “live” data out of
segment before rewriting segment.

• Number of segments read into memory;
identify live data; write live data back to
smaller number of clean, contiguous
segments.

• Segments read are marked as “clean”.

• Some bookkeeping needed: update files’ i-
nodes to point to new block locations, etc.

2

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Crash Recovery

• When crash occurs, last few disk
operations may have left disk in
inconsistent state.
– E.g., new file written but directory

entry not updated.
• At reboot time, OS must correct

possible inconsistencies.
• Traditional UNIX FS: need to scan

whole disk.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Crash Recovery in Sprite LFS 1

• Locations of last disk operations are at
the end of the log.
– Easy to perform crash recovery.

• 2 recovery strategies:
–Checkpoints and roll-forward.

• Checkpoints:
– Positions in the log where everything

is consistent.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Crash Recovery in Sprite LFS 2

• After crash, scan disk backward from
end of log to checkpoint, then scan
forward to recover as much
information as possible: roll forward.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

More on LFS

• Paper talks about their experience
implementing and using LFS.

• Performance evaluation using
benchmarks.

• Cleaning overhead.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Redundant Arrays of Inexpensive

Disks (RAID)
• Improve disk access time by using arrays of disks.

• Motivation:
– Disks are getting inexpensive.

– Lower cost disks:

_ Less capacity.

_ But cheaper, smaller, and lower power.

• Paper proposal: build I/O systems as arrays of
inexpensive disks.
– E.g., 75 inexpensive disks have 12 * I/O bandwidth of

expensive disks with same capacity.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RAID Organization 1
• Interleaving disks.

– Supercomputing applications.

– Transfer of large blocks of data at
high rates.

...

Grouped read: single read spread over multiple disks

3

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RAID Organization 2

• Independent disks.

– Transaction processing applications.

– Database partitioned across disks.

– Concurrent access to independent items.

...

Read Write

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Problem: Reliability

• Disk unreliability causes frequent
backups.

• What happens with 100*number of disks?
– MTTF becomes prohibitive
– Fault tolerance otherwise disk arrays

are too unreliable to be useful.
• RAID: use of extra disks containing

redundant information.
– Similar to redundant transmission of

data.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RAID Levels

• Different levels provide different
reliability, cost, and performance.

• MTTF as function of total number of
disks, number of data disks in a
group (G), number of check disks per
group (C), and number of groups.

• C determined by RAID level.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

First RAID Level

• Mirrors.

– Most expensive approach.

– All disks duplicated (G=1 and C=1).

– Every write to data disk results in
write to check disk.

– Double cost and half capacity.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Second RAID Level
• Hamming code.

• Interleave data across disks in a group.

• Add enough check disks to
detect/correct error.

• Single parity disk detects single error.

• Makes sense for large data transfers.

• Small transfers mean all disks must be
accessed (to check if data is correct).

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Third RAID Level

• Lower cost by reducing C to 1.

– Single parity disk.

• Rationale:

– Most check disks in RAID 2 used to detect
which disks failed.

– Disk controllers do that.

– Data on failed disk can be reconstructed by
computing the parity on remaining disks
and comparing it with parity for full group.

4

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Fourth RAID Level

• Try to improve performance of small
transfers using parallelism.

• Transfer units stored in single sector.

– Reads are independent, i.e., errors can
be detected without having to use other
disks (rely on controller).

– Also, maximum disk rate.

– Writes still need multiple disk access.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Fifth RAID Level

• Tries to achieve parallelism for
writes as well.

• Distributes data as well as check
information across all disks.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

The LOCUS System

• Developed at UCLA in early 80’s

– Essentially a distributed Unix

• Major contribution was transparency

– Transparency took many forms

• Environment:

– VAX 750’s and/or IBM PCs
connected by an Ethernet

• UNIX compatible.
Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

LOCUS

• Network/location transparency:

– Network of machines appear as
single machine to user.

– Hide machine boundaries.

– Local and remote resources look
the same to user.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Transparency in Locus

• Network Transparency

– Ability to hide boundaries

• Syntactic Transparency

– Local and remote calls take same form

• Semantic Transparency

– Independence from Operand Location

• Name Transparency

– A name always refers to the same object

– No need for closure, only one namespace

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Transparency in Locus (cont)

• Location Transparency
– Location can’t be inferred from name
– Makes it easier to move objects

• Syntactic Transparency
– Local and remote calls take same form

• Performance Transparency
– Programs with timing assumptions work

• Failure Transparency
– Remote errors indistinguishable from local

• Execution Transparency
– Results don’t change with location

5

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

LOCUS Distributed File System

• Tree-structured file name space.
– File name tree covers all file system

objects in all machines.
– Location transparency.
– File groups (UNIX file systems) “glued”

via mount.
• File replication.
– Varying degrees of replication.
– Locus responsible for consistency:

propagate updates, serve from most up-
to-date copy, and handle partitions.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Replication in LOCUS

• File group replicated at multiple
servers.
• Replicas of a file group may contain

different subsets of files belonging to
that file group.
• All copies of file assigned same

descriptor (i-node #).
– File unique name: <file group#, i-

node #).

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Replica Consistency

• Version vectors.

– Version vector associated with each
copy of a file.

– Maintain update history information.

– Used to ensure latest copies will be
used and to help updating outdated
copies.

– Optimistic consistency.

_ Potential inconsistencies.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

File System Operations 1

• Using site (US): client.

• Storage site (SS): server.

• Current synchronization site (CSS):
synchronization site; chooses the SS
for a file request.

– Knowledge of which files
replicated where.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

File System Operations 2

• Open:

US

SS

CSS

(1)
open

(2)
Be
SS?

(3)
response

(4)
response

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

File Modification
• At US:
– After each change, page sent to SS.
– At file close, all modified pages flushed to

SS.
• At SS: atomic commit.
– Changes to a file handled atomically.
– No changes are permanent until

committed.
– Commit and abort system calls.
– At file close time, changes are committed.
– Logging and shadow pages.

6

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

CSS

• Can implement variety of
synchronization policies.

– Enforce them upon file access.

– E.g., if sharing policy allows only
read-only sharing, CSS disallows
concurrent accesses.

