Gopyight ©

Advanced Operating Systems
Lecture notes

Dr. Dongho Kim

Dr. Tatyana Ryutov

University of Southern California
Information Sciences Institute

Continuation of
CSci555: Advanced Operating Systems
Lecture 8 - October 17, 2003

File System - Performance
(slides by Dr. Katia Obraczka)

Dr. Clifford Neuman

Dr. Tatyana Ryutov

University of Southern California
Information Sciences Institute

Gopyight ©

Outline

Gopyight ©

* Leases (covered last class)

— Time-based cache consistency
protocol.

* Log Structured File System and RAID.

— FS performance from the storage
management point of view.

* Locus system

Free Space Management

O

» Goal: maintain large, contiguous free chunks of
disk space for writing data.

* Problem: fragmentation.

» Approaches:

— Thread around used blocks.

_ Skip over active blocks and thread log
through free extents.

— Copying.
_ Active data copied in compacted form at head of log.
_ Generates contiguous free space.
_ But, expensive!

Gopyight ©

Free Space Management in LFS

» Divide disk into large, fixed-size segments.

— Segment size is large enough so that
transfer time (for read/write) >>> seek
time.

* Hybrid approach.

— Combination of threading and copying.
— Copying: segment cleaning.
— Threading between segments.

Gopyight ©

Segment Cleaning

* Process of copying “live” data out of
segment before rewriting segment.

* Number of segments read into memory;
identify live data; write live data back to
smaller number of clean, contiguous
segments.

+ Segments read are marked as “clean”.

+ Some bookkeeping needed: update files’ i-
nodes to point to new block locations, etc.

Gopyight ©




Crash Recovery

When crash occurs, last few disk

operations may have left disk in

inconsistent state.

—E.g., new file written but directory
entry not updated.

At reboot time, OS must correct

possible inconsistencies.

Traditional UNIX FS: need to scan
whole disk.

Gopyight ©

Crash Recovery in Sprite LFS 2

 After crash, scan disk backward from
end of log to checkpoint, then scan
forward to recover as much
information as possible: roll forward.

Gopyight ©

Crash Recovery in Sprite LFS 1

Locations of last disk operations are at
the end of the log.

— Easy to perform crash recovery.
* 2 recovery strategies:

— Checkpoints and roll-forward.
» Checkpoints:

—Positions in the log where everything
is consistent.

Gopyight ©

More on LFS

» Paper talks about their experience
implementing and using LFS.

* Performance evaluation using
benchmarks.

+ Cleaning overhead.

Gopyight ©

Redundant Arrays of Inexpensive

Disks (RAID) o
» Improve disk access time by using arrays of disks.
* Motivation:
— Disks are getting inexpensive.
— Lower cost disks:

_ Less capacity.

_ But cheaper, smaller, and lower power.
* Paper proposal: build I/O systems as arrays of

inexpensive disks.

— E.g., 75 inexpensive disks have 12 * 1/0 bandwidth of
expensive disks with same capacity.

Gopyight ©

RAID Organization 1
* Interleaving disks.
— Supercomputing applications.
— Transfer of large blocks of data at

high rates.

BE @
o 0 8
|

Grouped read: single read spread over multiple disks
Copyright ©




RAID Organization 2

* Independent disks.
— Transaction processing applications.
— Database partitioned across disks.
— Concurrent access to independent items.

"

Read {1 1T Write 11

LN 7

Gopyight ©

Problem: Reliability

» Disk unreliability causes frequent
backups.
» What happens with 100*number of disks?
— MTTF becomes prohibitive
— Fault tolerance otherwise disk arrays
are too unreliable to be useful.
* RAID: use of extra disks containing
redundant information.
— Similar to redundant transmission of
data.

Gopyight ©

RAID Levels

« Different levels provide different
reliability, cost, and performance.

* MTTF as function of total number of
disks, number of data disks in a
group (G), number of check disks per
group (C), and number of groups.

» C determined by RAID level.

Gopyight ©

First RAID Level

* Mirrors.
— Most expensive approach.
— All disks duplicated (G=1 and C=1).

— Every write to data disk results in
write to check disk.

— Double cost and half capacity.

Gopyight ©

Second RAID Level

+ Hamming code.
Interleave data across disks in a group.

« Add enough check disks to
detect/correct error.

+ Single parity disk detects single error.
+ Makes sense for large data transfers.

Small transfers mean all disks must be
accessed (to check if data is correct).

Gopyight ©

Third RAID Level

* Lower cost by reducing C to 1.
— Single parity disk.
+ Rationale:
— Most check disks in RAID 2 used to detect
which disks failed.
— Disk controllers do that.
— Data on failed disk can be reconstructed by
computing the parity on remaining disks
and comparing it with parity for full group.

Gopyight ©




Fourth RAID Level

* Try to improve performance of small
transfers using parallelism.

» Transfer units stored in single sector.

— Reads are independent, i.e., errors can
be detected without having to use other
disks (rely on controller).

— Also, maximum disk rate.
— Writes still need multiple disk access.

Gopyight ©

Fifth RAID Level

* Tries to achieve parallelism for
writes as well.

« Distributes data as well as check
information across all disks.

Gopyight ©

The LOCUS System

* Developed at UCLA in early 80’s
— Essentially a distributed Unix

* Major contribution was transparency
— Transparency took many forms

* Environment:

— VAX 750’s and/or IBM PCs
connected by an Ethernet

* UNIX compatible.

Gopyight ©

LOCUS

» Network/location transparency:

— Network of machines appear as
single machine to user.

— Hide machine boundaries.

— Local and remote resources look
the same to user.

Gopyight ©

Transparency in Locus

Network Transparency
— Ability to hide boundaries
Syntactic Transparency
— Local and remote calls take same form
Semantic Transparency
— Independence from Operand Location
Name Transparency
— A name always refers to the same object
— No need for closure, only one namespace

Gopyight ©

Transparency in Locus (cont)

Location Transparency

— Location can’t be inferred from name

— Makes it easier to move objects
Syntactic Transparency

— Local and remote calls take same form

* Performance Transparency

— Programs with timing assumptions work
Failure Transparency

— Remote errors indistinguishable from local
Execution Transparency

— Results don’t change with location

Gopyight ©




LOCUS Distributed File System

* Tree-structured file name space.

— File name tree covers all file system
objects in all machines.

— Location transparency.

— File groups (UNIX file systems) “glued”
via mount.

* File replication.
— Varying degrees of replication.
— Locus responsible for consistency:

propagate updates, serve from most up-
to-date copy, and handle partitions.

Gopyight ©

Replication in LOCUS

* File group replicated at multiple
servers.

* Replicas of a file group may contain
different subsets of files belonging to
that file group.

« All copies of file assigned same
descriptor (i-node #).

— File unique name: <file group#, i-
node #).

Gopyight ©

Replica Consistency

* Version vectors.

— Version vector associated with each
copy of a file.

— Maintain update history information.

— Used to ensure latest copies will be
used and to help updating outdated
copies.

— Optimistic consistency.
_ Potential inconsistencies.

Gopyight ©

File System Operations 1

* Using site (US): client.

« Storage site (SS): server.

* Current synchronization site (CSS):
synchronization site; chooses the SS
for a file request.

— Knowledge of which files
replicated where.

Gopyight ©

File System Operations 2

» Open:

(3)

response

Gopyight ©

File Modification

+ AtUS:
— After each change, page sent to SS.
— At file close, all modified pages flushed to
SS.
+ At SS: atomic commit.
— Changes to a file handled atomically.
— No changes are permanent until
committed.
— Commit and abort system calls.
— At file close time, changes are committed.
— Logging and shadow pages.

Gopyight ©




CSS

« Can implement variety of
synchronization policies.
— Enforce them upon file access.
— E.g., if sharing policy allows only
read-only sharing, CSS disallows
concurrent accesses.

Gopyight ©




