
1

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

CSci555: Advanced Operating Systems
Lecture 8 - October 17, 2003
File System - Performance

(slides by Dr. Katia Obraczka)

Dr. Tatyana Ryutov
Dr. Dongho Kim
University of Southern California
Information Sciences Institute

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Outline

• Leases
– Continuum of cache consistency

mechanisms.

• Log Structured File System and RAID.
– FS performance from the storage

management point of view.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Review

• File Systems.
• File System Case Studies:

– NFS.
– Sprite.
– Andrew.
– Coda.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Caching

• Improves performance in terms of
response time, availability during
disconnected operation, and fault
tolerance.

• Price: consistency
– Methods:

▪ Timestamp-based invalidation
–Check on use

▪ Callbacks

2

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Leases

• Time-based cache consistency protocol.
• Contract between client and server.

– Lease grants holder control over writes
to corresponding data item during lease
term.

– Server must obtain approval from
holder of lease before modifying data.

– When holder grants approval for write, it
invalidates its local copy.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Protocol Description 1

C S

T=0
Read

(1)
read (file-name)

(2)
file, lease(term)

C S

T < term

Read

$

(1)
read (file-name)

(2)
file

If file still in cache:
if lease is still valid, no
need to go to server.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Protocol Description 2

C S

T > term
Read

(1)
read (file-name)

(2)
if file changed,
file, extend lease

On writes:

C S

T=0
Write

(1)
write (file-name) Server defers write

request till: approval
from lease holder(s) or
lease expires.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Considerations

• Unreachable lease holder(s)?
• Leases and callbacks.

– Consistency?
– Lease term

3

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Lease Term

• Short leases:
– Minimize delays due to failures.
– Minimize impact of false sharing.
– Reduce storage requirements at

server (expired leases reclaimed).
• Long leases:

– More efficient for repeated access
with little write sharing.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Lease Management 1

• Client requests lease extension before
lease expires in anticipation of file
being accessed.
– Performance improvement?

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Lease Management 2

• Multiple files per lease.
– Performance improvement?
– Example: one lease per directory.
– System files: widely shared but

infrequently written.
– False sharing?
– Multicast lease extensions

periodically.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Lease Management 3

• Lease term based on file access
characteristics.
– Heavily write-shared file: lease

term = 0.
– Longer lease terms for distant

clients.

4

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Clock Synchronization Issues

• Servers and clients should be
roughly synchronized.
– If server clock advances too fast

or client’s clock too slow:
inconsistencies.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Next...
• Papers on file system performance from

storage management perspective.
• Issues:

– Disk access time >>> memory access time.
– Discrepancy between disk access time

improvements and other components (e.g.,
CPU).

• Minimize impact of disk access time by:
– Reducing # of disk accesses or
– Reducing access time by performing

parallel access.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Log-Structured File System

• Built as extension to Sprite FS (Sprite LFS).
• New disk storage technique that tries to use

disks more efficiently.
• Assumes main memory cache for files.
• Larger memory makes cache more efficient in

satisfying reads.
– Most of the working set is cached.

• Thus, most disk access cost due to writes!

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Main Idea
• Batch multiple writes in file cache.

– Transform many small writes into 1 large
one.

– Close to disk’s full bandwidth utilization.
• Write to disk in one write in a contiguous

region of disk called log.
– Eliminates seeks.
– Improves crash recovery.

▪ Sequential structure of log.
▪ Only most recent portion of log needs to

be examined.

5

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

LSFS Structure

• Two key functions:
– How to retrieve information from log.
– How to manage free disk space.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

File Location and Retrieval 1

• Allows random access to information in the log.
– Goal is to match or increase read

performance.
– Keeps indexing structures with log.

• Each file has i-node containing:
– File attributes (type, owner, permissions).
– Disk address of first 10 blocks.
– Files > 10 blocks, i-node contains pointer to

more data.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

File Location and Retrieval 2

• In UNIX FS:
– Fixed mapping between disk address and file i-

node: disk address as function of file id.
• In LFS:

– I-nodes written to log.
– I-node map keeps current location of each i-node.

– I-node maps usually fit in main memory cache.

i-node’s disk address
File id

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Free Space Management
• Goal: maintain large, contiguous free chunks of

disk space for writing data.
• Problem: fragmentation.
• Approaches:

– Thread around used blocks.
▪ Skip over active blocks and thread log

through free extents.
– Copying.

▪ Active data copied in compacted form at head of log.
▪ Generates contiguous free space.
▪ But, expensive!

6

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Free Space Management in LFS

• Divide disk into large, fixed-size segments.
– Segment size is large enough so that

transfer time (for read/write) >>> seek
time.

• Hybrid approach.
– Combination of threading and copying.
– Copying: segment cleaning.
– Threading between segments.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Segment Cleaning
• Process of copying “live” data out of

segment before rewriting segment.
• Number of segments read into memory;

identify live data; write live data back to
smaller number of clean, contiguous
segments.

• Segments read are marked as “clean”.
• Some bookkeeping needed: update files’ i-

nodes to point to new block locations, etc.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Crash Recovery

• When crash occurs, last few disk
operations may have left disk in
inconsistent state.
– E.g., new file written but directory

entry not updated.
• At reboot time, OS must correct

possible inconsistencies.
• Traditional UNIX FS: need to scan

whole disk.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Crash Recovery in Sprite LFS 1

• Locations of last disk operations are at
the end of the log.
– Easy to perform crash recovery.

• 2 recovery strategies:
– Checkpoints and roll-forward.

• Checkpoints:
– Positions in the log where everything

is consistent.

7

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Crash Recovery in Sprite LFS 2

• After crash, scan disk backward from
end of log to checkpoint, then scan
forward to recover as much
information as possible: roll forward.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

More on LFS

• Paper talks about their experience
implementing and using LFS.

• Performance evaluation using
benchmarks.

• Cleaning overhead.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Redundant Arrays of Inexpensive
Disks (RAID)

• Improve disk access time by using arrays of disks.
• Motivation:

– Disks are getting inexpensive.
– Lower cost disks:

▪ Less capacity.
▪ But cheaper, smaller, and lower power.

• Paper proposal: build I/O systems as arrays of
inexpensive disks.
– E.g., 75 inexpensive disks have 12 * I/O bandwidth of

expensive disks with same capacity.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RAID Organization 1
• Interleaving disks.

– Supercomputing applications.
– Transfer of large blocks of data at

high rates.

...

Grouped read: single read spread over multiple disks

8

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RAID Organization 2
• Independent disks.

– Transaction processing applications.
– Database partitioned across disks.
– Concurrent access to independent items.

...

Read Write

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Problem: Reliability

• Disk unreliability causes frequent
backups.

• What happens with 100*number of disks?
– MTTF becomes prohibitive
– Fault tolerance otherwise disk arrays

are too unreliable to be useful.
• RAID: use of extra disks containing

redundant information.
– Similar to redundant transmission of

data.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RAID Levels

• Different levels provide different
reliability, cost, and performance.

• MTTF as function of total number of
disks, number of data disks in a
group (G), number of check disks per
group (C), and number of groups.

• C determined by RAID level.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

First RAID Level

• Mirrors.
– Most expensive approach.
– All disks duplicated (G=1 and C=1).
– Every write to data disk results in

write to check disk.
– Double cost and half capacity.

9

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Second RAID Level
• Hamming code.
• Interleave data across disks in a group.
• Add enough check disks to

detect/correct error.
• Single parity disk detects single error.
• Makes sense for large data transfers.
• Small transfers mean all disks must be

accessed (to check if data is correct).

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Third RAID Level
• Lower cost by reducing C to 1.

– Single parity disk.
• Rationale:

– Most check disks in RAID 2 used to detect
which disks failed.

– Disk controllers do that.
– Data on failed disk can be reconstructed by

computing the parity on remaining disks
and comparing it with parity for full group.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Fourth RAID Level

• Try to improve performance of small
transfers using parallelism.

• Transfer units stored in single sector.
– Reads are independent, i.e., errors can

be detected without having to use other
disks (rely on controller).

– Also, maximum disk rate.
– Writes still need multiple disk access.

Copyright © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Fifth RAID Level

• Tries to achieve parallelism for
writes as well.

• Distributes data as well as check
information across all disks.

