
1

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

CSci555: Advanced Operating Systems
Lecture 7 - October 8, 2004

File Systems

Dongho Kim

University of Southern California

Information Sciences Institute

Original slides by Dr. Katia Obraczka

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

File Systems

• Provide set of primitives that
abstract users from details of
storage access and management.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed File Systems

• Promote sharing across machine
boundaries.

• Transparent access to files.

• Make diskless machines viable.

• Increase disk space availability by
avoiding duplication.

• Balance load among multiple servers.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Sun Network File System 1

• De facto standard:

– Mid 80’s.

– Widely adopted in academia and industry.

• Provides transparent access to remote files.

• Uses Sun RPC and XDR.

– NFS protocol defined as set of procedures
and corresponding arguments.

– Synchronous RPC

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Sun NFS 2

• Stateless server:
–Remote procedure calls are self-

contained.
– Servers don’t need to keep state

about previous requests.
_Flush all modified data to disk

before returning from RPC call.
–Robustness.
_No state to recover.
_Clients retry.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Location Transparency

• Client’s file name space includes remote files.

– Shared remote files are exported by server.

– They need to be remote-mounted by client.

Client
/root

vmunix usr

staffstudents

Server 1
/root

export

users

joe bob

Server 2
/root

nfs

users

ann eve

2

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Achieving Transparency 1

• Mount service.

–Mount remote file systems in the
client’s local file name space.

–Mount service process runs on
each node to provide RPC
interface for mounting and
unmounting file systems at client.

–Runs at system boot time or user
login time.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Achieving Transparency 2
• Automounter.

– Dynamically mounts file systems.

– Runs as user-level process on clients
(daemon).

– Resolves references to unmounted
pathnames by mounting them on demand.

– Maintains a table of mount points and the
corresponding server(s); sends probes to
server(s).

– Primitive form of replication

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Transparency?

• Early binding.

–Mount system call attaches remote
file system to local mount point.

–Client deals with host name once.

–But, mount needs to happen
before remote files become
accessible.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Other Functions

• NFS file and directory operations:

– read, write, create, delete, getattr, etc.

• Access control:

– File and directory access
permissions.

• Path name translation:

– Lookup for each path component.

–Caching.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Implementation

Unix
FS

NFS
client

VFS

Client

Unix Kernel

NFS
server

Unix
FS

VFS

Server

Unix Kernel

Client
process

RPC

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Virtual File System
• VFS added to UNIX kernel.
– Location-transparent file access.
– Distinguishes between local and remote

access.

• @ client:
– Processes file system system calls to

determine whether access is local (passes
it to UNIX FS) or remote (passes it to NFS
client).

• @ server:
– NFS server receives request and passes it

to local FS through VFS.

3

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

VFS

• If local, translates file handle to internal file
id’s (in UNIX i-nodes).

• V-node:
_ If file local, reference to file’s i-node.
_ If file remote, reference to file handle.

• File handle: uniquely distinguishes file.

File system id I-node # I-node generation #

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

NFS Caching

• File contents and attributes.

• Client versus server caching.

Client Server

$ $

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Server Caching
• Read:
– Same as UNIX FS.
–Caching of file pages and attributes.
–Cache replacement uses LRU.

• Write:
–Write through (as opposed to delayed

writes of conventional UNIX FS). Why?
– [Delayed writes: modified pages written

to disk when buffer space needed, sync
operation (every 30 sec), file close].

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Client Caching 1

• Timestamp-based cache validation.

• Read:

– Validity condition:

(T-Tc < TTL) V (Tmc=Tms)

• Write:

–Modified pages marked and flushed
to server at file close or sync.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Client Caching 2

• Consistency?

–Not always guaranteed!

– e.g., client modifies file; delay for
modification to reach servers + 3-
sec (TTL) window for cache
validation from clients sharing file.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Cache Validation

• Validation check performed when:
– First reference to file after TTL expires.
– File open or new block fetched from server.

• Done for all files, even if not being shared.
– Why?

• Expensive!
– Potentially, every 3 sec get file attributes.
– If needed invalidate all blocks.
– Fetch fresh copy when file is next

accessed.

4

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

The Sprite File System

• Main memory caching on both client
and server.

• Write-sharing consistency guarantees.

• Variable size caches.

– VM and FS negotiate amount of
memory needed.

–According to caching needs, cache
size changes.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Sprite

• Sprite supports concurrent writes by
disabling caching of write-shared files.
– If file shared, server notifies client

that has file open for writing to write
modified blocks back to server.

– Server notifies all client that have
file open for read that file is no
longer cacheable; clients discard all
cached blocks, so access goes
through server.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Sprite

• Sprite servers are stateful.

–Need to keep state about current
accesses.

–Centralized points for cache
consistency.

_Bottleneck?

_Single point of failure?

• Tradeoff: consistency versus
performance/robustness.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Andrew

• Distributed computing environment
developed at CMU.

• Campus wide computing system.

–Between 5 and 10K workstations.

– 1991: ~ 800 workstations, 40
servers.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Andrew FS

• Goals:

– Information sharing.

– Scalability.
_ Key strategy: caching of whole files at client.

_ Whole file serving

– Entire file transferred to client.

_ Whole file caching

– Local copy of file cached on client’s local
disk.

– Survive client’s reboots and server
unavailability.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Whole File Caching

• Local cache contains several most
recently used files.

S
(1)
open
<file>
?

(2) open<file>

C

(5) file

(3)

(4)(6)

file

- Subsequent operations on file applied to local copy.
- On close, if file modified, sent back to server.

5

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Implementation 1

• Network of workstations running
Unix BSD 4.3 and Mach.

• Implemented as 2 user-level
processes:

– Vice: runs at each Andrew server.

– Venus: runs at each Andrew client.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Implementation 2

• Modified BSD 4.3 Unix
kernel.
– At client, intercept file

system calls (open,
close, etc.) and pass
them to Venus when
referring to shared files.

• File partition on local disk
used as cache.

• Venus manages cache.
– LRU replacement policy.
– Cache large enough to

hold 100’s of average-
sized files.

Unix kernel

Unix kernel

Vice

User
program

Venus

Network

Client

Server

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

File Sharing

• Files are shared or local.
– Shared files
_Utilities (/bin, /lib): infrequently updated or

files accessed by single user (user’s home
directory).
_Stored on servers and cached on clients.
_Local copies remain valid for long time.

– Local files
_Temporary files (/tmp) and files used for

start-up.
_Stored on local machine’s disk.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

File Name Space

• Regular UNIX directory hierarchy.
• “cmu” subtree contains shared files.
• Local files stored on local machine.
• Shared files: symbolic links to shared files.

/

tmp bin vmunix
cmu

bin

Local Shared

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

AFS Caching
• AFS-1 uses timestamp-based cache

invalidation.
• AFS-2 and 3 use callbacks.
– When serving file, Vice server promises to

notify Venus client when file is modified.
– Stateless servers?
– Callback stored with cached file.
_Valid.
_Canceled: when client is notified by

server that file has been modified.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

AFS Caching
• Callbacks implemented using RPC.
• When accessing file, Venus checks if file

exists and if callback valid; if canceled,
fetches fresh copy from server.

• Failure recovery:
– When restarting after failure, Venus checks

each cached file by sending validation
request to server.

– Also periodic checks in case of
communication failures.

6

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

AFS Caching

• At file close time, Venus on client
modifying file sends update to Vice server.

• Server updates its own copy and sends
callback cancellation to all clients caching
file.

• Consistency?

• Concurrent updates?

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

AFS Replication

• Read-only replication.

–Only read-only files allowed to be
replicated at several servers.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Coda

• Evolved from AFS.

• Goal: constant data availability.

– Improved replication.

_Replication of read-write volumes.

– Disconnected operation: mobility.

_Extension of AFS’s whole file caching
mechanism.

• Access to shared file repository (servers)
versus relying on local resources when
server not available.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Replication in Coda

• Replication unit: file volume (set of files).
• Set of replicas of file volume: volume

storage group (VSG).
• Subset of replicas available to client:

AVSG.
– Different clients have different AVSGs.
– AVSG membership changes as server

availability changes.
– On write: when file is closed, copies of

modified file broadcast to AVSG.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Optimistic Replication

• Goal is availability!

• Replicated files are allowed to be modified
even in the presence of partitions or during
disconnected operation.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Disconnected Operation
• AVSG = { }.

• Network/server failures or host on the move.

• Rely on local cache to serve all needed files.

• Loading the cache:

– User intervention: list of files to be cached.

– Learning usage patterns over time.

• Upon reconnection, cached copies validated
against server’s files.

7

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Normal and Disconnected Operation

• During normal operation:
– Coda behaves like AFS.
– Cache miss transparent to user; only

performance penalty.
– Load balancing across replicas.
– Cost: replica consistency + cache

consistency.

• Disconnected operation:
– No replicas are accessible; cache miss

prevents further progress; need to load
cache before disconnection.

Copyright © 1995-2003 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Replication and Caching

• Coda integrates server replication and client caching.

– On cache hit and valid data: Venus does not need to
contact server.

– On cache miss: Venus gets data from an AVSG
server, i.e., the preferred server (PS).

_ PS chosen at random or based on proximity, load.

– Venus also contacts other AVSG servers and collect
their versions; if conflict, abort operation; if replicas
stale, update them off-line.

