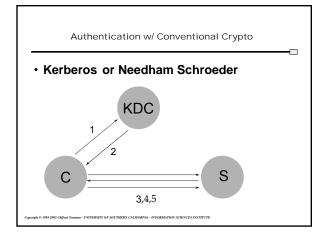
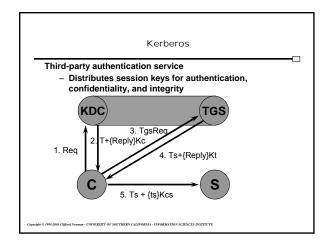
CSci555: Advanced Operating Systems Lecture 6 - September 30, 2005 Security Architecture


Dr. Dongho Kim
Dr. Ryutov
University of Southern California
Information Sciences Institute


Copyright © 1995-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Key distribution

- Conventional cryptography
 - Single key shared by both parties
- Public Key cryptography
 - Public key published to world
 - Private key known only by owner
- · Third party certifies or distributes keys
 - Certification infrastructure
 - Authentication

pyright © 1995-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Public Key Cryptography (revisited)

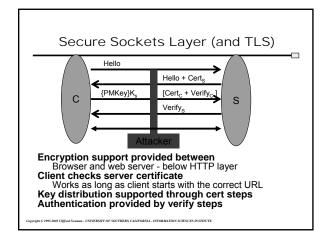
- Key Distribution
 - Confidentiality not needed for public key
 - Solves n2 problem
- Performance
 - Slower than conventional cryptography
 - Implementations use for key distribution, then use conventional crypto for data encryption
- · Trusted third party still needed
 - To certify public key
 - To manage revocation
 - In some cases, third party may be off-line

opyright © 1995-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Certificate-Based Authentication

Certification authorities issue signed certificates

- Banks, companies, & organizations like Verisign act as CA's
- Certificates bind a public key to the name of a user
- Public key of CA certified by higher-level CA's
- Root CA public keys configured in browsers & other software
- Certificates provide key distribution


 $sright \ 0.\ 1995-2005 \ Clifford\ Neuman - UNIVERSITY\ OF\ SOUTHERN\ CALIFORNIA - INFORMATION\ SCIENCES\ INSTITUTE$

Certificate-Based Authentication (2)

Authentication steps

- Verifier provides nonce, or a timestamp is used instead.
- Principal selects session key and sends it to verifier with nonce, encrypted with principal's private key and verifier's public key, and possibly with principal's certificate
- Verifier checks signature on nonce, and validates certificate.

Copyright © 1995-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

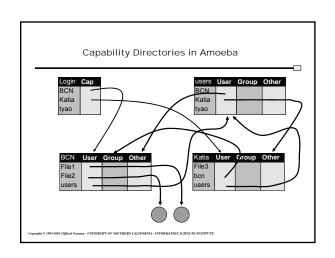
Trust models for certification

- · X.509 Hierarchical
 - Single root (original plan)
 - Multi-root (better accepted)
 - SET has banks as CA's and common SET root
- · PGP Model
 - "Friends and Family approach" S. Kent
- · Other representations for certifications
- · No certificates at all
 - Out of band key distribution
 - SSH

Copyright © 1995-2005 Clifford Nauman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

Global Authentication Service

- · Pair-wise trust in hierarchy
 - Name is derived from path followed
 - Shortcuts allowed, but changes name
 - Exposure of path is important for security
- Compared to Kerberos
 - Transited field in Kerberos doesn't change name
- Compared with X.509
 - X.509 has single path from root
 - X.509 is for public key systems
- · Compared with PGP
 - PGP evaluates path at end, but may have name conflicts


Copyright © 1995-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Capability Based Systems - Amoeba

"Authentication not an end in itself"

- · Theft of capabilities an issue
 - Claims about no direct access to network
 - Replay an issue
- Modification of capabilities a problem
 - One way functions provide a good solution
- Where to store capabilities for convenience
 - In the user-level naming system/directory
 - 3 columns
- · Where is authentication in Amoeba
 - To obtain initial capability

Copyright © 1995-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

Security Architectures

• DSSA

- Delegation is the important issue
 - · Workstation can act as user
 - Software can act as workstation if given key
 - Software can act as developer if checksum validated
- Complete chain needed to assume authority
- Roles provide limits on authority new sub-principal
- · Proxies Also based on delegation
 - Limits on authority explicitly embedded in proxy
 - Works well with access control lists

Copyright © 1998-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Authorization

- It must be possible to maintain authorization information separate from the end servers
 - Less duplication of authorization database
 - Less need for specific prior arrangement
 - Simplified management
- · Based on restricted proxies which support
 - Authorization servers
 - Group Servers
 - Capabilities
 - Delegation

pyright © 1995-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Proxies

- A proxy allows a second principal to operate with the rights and privileges of the principal that issued the proxy
 - Existing authentication credentials
 - Too much privilege and too easily propagated
- · Restricted Proxies
 - By placing conditions on the use of proxies, they form the basis of a flexible authorization mechanism

Coppright © 1995-2005 Clifford Newman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUT

Restricted Proxies

- Two Kinds of proxies
 - Proxy key needed to exercise bearer proxy
 - Restrictions limit use of a delegate proxy
- · Restrictions limit authorized operations
 - Individual objects
 - Additional conditions

Copyright © 1993-2005 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Authorization and Group Services R 1 2 C 3 1. Authenticated authorization request (operation X) 2. [operation X only]R, {Kproxy} Ksession 3. [operation X only]R, authentication using Kproxy

Central Authorization

- Authorization server uses extended ACLs
 - Conditions are not evaluated, but instead attached to credentials
- · Groups implemented by auth server
 - Server grants right to assert group membership
- Application servers configured to use authorization server
 - Minimal local ACL
 - Can use multiple Authorization servers

оругірія © 1995-2005 Cifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Applied Security

- Electronic commerce
 - SSL Applies authentication and encryption
 - NetCheque applies proxies
 - SET applies certification
 - End system security a major issue
- · What we have today
 - Firewalls
 - Web passwords, encryption, certificates
 - Windows 2000 uses Kerberos

Trust Negotiation

- Problem: Identity is not relevant
- Solution: Access control decisions are based on attributes of both the client and server (mutual trust)
 - Client attributes: citizenship, security clearance, job classification, etc.
 Server attributes: privacy policy satisfaction, result of recent
 - security audit, etc.
- Credentials and Policies may contain sensitive information and should be treated as protected resources
- Trust Negotiation: The process of establishing trust between strangers in open systems based on the attributes of the participants