Naming Concepts

- Name – What you call something
- Address – Where it is located
- Route – How one gets to it
 - What is http://www.isi.edu/~dongho?
- But it is not that clear anymore, it depends on perspective. A name from one perspective may be an address from another.
 - Perspective means layer of abstraction

What are the things we name

- Users – To direct, and to identify
- Hosts (computers) – High level and low level
- Services – Service and instance
- Files and other “objects” – Content and repository
- Groups – Of any of the above

How we name things

- Host-Based Naming
 - Host-name is required part of object name
- Global Naming
 - Must look-up name in global database to find address
 - Name transparency
- User/Object Centered Naming
 - Namespace is centered around user or object
- Attribute-Based Naming
 - Object identified by unique characteristics
 - Related to resource discovery / search / indexes

Namespace

A name space maps:
\[\Sigma^* \rightarrow X \in \Omega \]

At a particular point in time.

- The rest of the definition, and even some of the above, is open to discussion/debate.
- What is a “flat namespace” – Implementation issue
Case Studies

- Host Table
 - Flat namespace (?)
 - Global namespace (?)
- Grapevine
 - Two-level, iterative lookup
 - Clearinghouse 3 level
- Domain name system
 - Arbitrary depth
 - Iterative or recursive(chained) lookup
 - Multi-level caching

Domain Name System

Iterative query

```
GetHostByName(usc.arpa);
scan(host file);
return(matching entry);
```

Lookup(venera.isi.edu)

Chained query

```
Lookup(venera.isi.edu)
```

Scalability of naming

- Scalability
 - Ability to continue to operate efficiently as a system grows large, either numerically, geographically, or administratively.
- Affected by
 - Frequency of update
 - Granularity
 - Evolution/reconfiguration
- DNS characteristics
 - Multi-level implementation
 - Replication of root and other servers
 - Multi-level caching

Closure

- Closure binds an object to the namespace within which names embedded in the object are to be resolved.
 - “Object” may as small as the name itself
 - GNS binds the names to namespaces
 - Prospero binds enclosing object to multiple namespaces
 - Tilde and quicksilver bind users to namespaces
 - NFS mount table constructs system centered namespace
 - Movement of objects can cause problems
 - When closure is associated with wrong entity
Other implementations of naming

- Broadcast
 - Limited scalability, but faster local response
- Prefix tables
 - Essentially a form of caching
- Capabilities
 - Combines security and naming
 - Traditional name service built over capability based addresses

Advanced Name Systems

- DEC’s Global Naming
 - Support for reorganization the key idea
 - Little coordination needed in advance
- Half Closure
 - Names are all tagged with namespace identifiers
 - DID - Directory Identifier
 - Hidden part of name - makes it global
 - Upon reorganization, new DID assigned
 - Old names relative to old root
 - But the DID’s must be unique - how do we assign?

Prospero Directory Service

- Multiple namespace centered around a “root” node that is specific to each namespace.
 - Closure binds objects to this “root” node.
- Layers of naming
 - User level names are “object” centered
 - Objects still have an address which is global
 - Namespaces also have global addresses
- Customization in Prospero
 - Filters create user level derived namespaces on the fly
 - Union links support merging of views

Resource Discovery

- Similar to naming
 - Browsing related to directory services
 - Indexing and search similar to attribute based naming
- Attribute based naming
 - Profile
 - Multi-structured naming
- Search engines
- Computing resource discovery

The Web

- Object handles
 - Uniform Resource Identifier (URI’s)
 - Uniform Resource Locators (URL’s)
 - Uniform Resource Names (URN’s)
- XML
 - Definitions provide a form of closure
 - Conceptual level rather than the “namespace” level.

LDAP

- Manage information about users, services
 - Lighter weight than X.500 DAP
 - Heavier than DNS
 - Applications have conventions on where to look
 - Often data is duplicated because of multiple conventions
 - Performance enhancements not as well defined
 - Caching harder because of less constrained patterns of access