
1

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Advanced Operating Systems
Lecture notes

Dr. Dongho Kim
Dr. Tatyana Ryutov
University of Southern California
Information Sciences Institute

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

CSci555: Advanced Operating Systems
Lecture 3 – Distributed Concurrency, Transactions, Deadlock

9 September 2005

Dr. Tatyana Ryutov
University of Southern California
Information Sciences Institute
(lecture slides written by Dr. Katia Obraczka)

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Administration

• Use web discussion board
• Email with questions to

csci555@usc.edu
– CSci555 in Subject of email
– Try web board for questions too

• Assignment 1 is due Thursday

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Today

• Concurrency and Synchronization
[Hauser et al.]

• Transactions [Spector et al.]
• Distributed Deadlocks [Chandy et al.]
• Replication [Birman and Gifford]
• Time in Distributed Systems [Lamport and

Jefferson]

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Concurrency Control and Synchronization

• How to control and synchronize possibly
conflicting operations on shared data by
concurrent processes?

• First, some terminology.
– Processes.
– Light-weight processes.
– Threads.
– Tasks.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Processes

• Text book:
– Processing activity associated with an

execution environment, ie, address
space and resources (such as
communication and synchronization
resources).

2

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Threads
• OS abstraction of an activity/task.

– Execution environment expensive to create
and manage.

– Multiple threads share single execution
environment.

– Single process may spawn multiple threads.
– Maximize degree of concurrency among

related activities.
– Example: multi-threaded servers allow

concurrent processing of client requests.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Other Terminology

• Process versus task/thread.
– Process: heavy-weight unit of

execution.
– Task/thread: light-weight unit of

execution.
P1 P2

t1 t2

t11 t12

t1 t2

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Threads Case Study 1

• Hauser et al.
• Examine use of user-level threads in 2

OS’s:
– Xerox Parc’s Cedar (research).
– GVX (commercial version of Cedar).

• Study dynamic thread behavior.
– Classes of threads (eternal, worker,

transient)
– Number of threads.
– Thread lifetime.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Thread Paradigms

• Different categories of usage:
– Defer work: thread does work not vital to the

main activity.
▪ Examples: printing a document, sending

mail.
– Pumps: used in pipelining; use output of a

thread as input and produce output to be
consumed by another task.

– Sleepers: tasks that repeatedly wait for an
event to execute; e.g., check for network
connectivity every x seconds.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Synchronization

• So far, how one defines/activates
concurrent activities.

• But how to control access to shared
data and still get work done?

• Synchronization via:
– Shared data [DSM model].
– Communication [MP model].

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Synchronization by Shared Data

• Primitives
– Semaphores.
– Conditional critical regions.
– Monitors.

flexibilitystructure

3

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Synchronization by MP
• Explicit communication.
• Primitives send and receive

Blocking send, blocking receive: sender and receiver are blocked until
message is delivered (redezvous)

Nonblocking send, blocking receive: sender continues processing
receiver is blocked until the requested message arrives

Nonblocking send, nonblocking receive: messages are sent to a shared
data structure consisting of queues (mailboxes)

Deadlocks ?

• Mailboxes one process sends a message to the mailbox and
the other process picks up the message from the mailbox

Example:
Send (mailbox, msg)
Receive (mailbox, msg)

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Transactions
• Database term.

– Execution of program that accesses a
database.

• In distributed systems,
– Concurrency control in the client/server

model.
– From client’s point of view, sequence of

operations executed by server in servicing
client’s request in a single step.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Transaction Properties

• ACID:
Atomicity: a transaction is an atomic unit of processing

and it is either performed entirely or not at all

Consistency: a transaction's correct execution must take
the database from one correct state to another

Isolation: the updates of a transaction must not be made
visible to other transactions until it is committed

Durability: if transaction commits, the results must never
be lost because of subsequent failure

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Transaction Atomicity
• “All or nothing”.
• Sequence of operations to service client’s request are

performed in one step, ie, either all of them are executed
or none are.

• Start of a transaction is a continuation point to which it
can roll back.

• Issues:
– Multiple concurrent clients: “isolation”.

1. Each transaction accesses resources as if there were no
other concurrent transactions.

2. Modifications of the transaction are not visible to other
resources before it finishes.

3. Modifications of other transactions are not visible during the
transaction at all.

– Server failures: “failure atomicity”.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Transaction Features
• Recoverability: server should be able to “roll back”

to state before transaction execution.

• Serializability: transactions executing concurrently
must be interleaved in such a way that the resulting
state is equal to some serial execution of the
transactions

• Durability: effects of transactions are permanent.
– A completed transaction is always persistent (though

values may be changed by later transactions).

– Modified resources must be held on persistent storage
before transaction can complete. May not just be disk
but can include battery-backed RAM.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Concurrency Control

Maintain transaction serializability:
establish order of concurrent transaction execution
Interleave execution of operations to ensure
serializability

• Basic Server operations: read or write.
• 3 mechanisms:

– Locks.
– Optimistic concurrency control.
– Timestamp ordering.

4

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Locks
• Lock granularity: affects level of concurrency.

– 1 lock per shared data item.
– Shared Read

▪ Exists when concurrent transactions granted READ access
▪ Issued when transaction wants to read and exclusive lock not

held on item
– Exclusive Write

Exists when access reserved for locking transaction
Used when potential for conflict exists
Issued when transaction wants to update unlocked data

• Many Read locks simultaneously possible for a given item, but
only one Write lock

• Transaction that requests a lock that cannot be granted must
wait

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Lock Implementation

• Server lock manager
– Maintains table of locks for server data

items.
– Lock and unlock operations.
– Clients wait on a lock for given data

until data is released; then client is
signalled.

– Each client’s request runs as separate
server thread.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Deadlock
• Use of locks can lead to deadlock.
• Deadlock: each transaction waits for another transaction to release

a lock forming a wait cycle.
• Deadlock condition: cycle in the wait-for graph.
• Deadlock prevention and detection.

– require all locks to be acquired at once
Problems?

– Ordering of data items: once a transaction locks an item, it
cannot lock anything occurring earlier in the ordering

• Deadlock resolution: lock timeout.

T1 T2

T3

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Optimistic Concurrency Control 1

• Assume that most of the time,
probability of conflict is low.

• Transactions allowed to proceed in
parallel until close transaction
request from client.

• Upon close transaction, checks for
conflict; if so, some transactions
aborted.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Optimistic Concurrency 2
• Read phase

– Transactions have tentative version of data items it accesses.
▪ Transaction reads data and stores in local variables
▪ Any writes are made to local variables without updating the

actual data
– Tentative versions allow transactions to abort without making

their effect permanent.

• Validation phase
– Executed upon close transaction.
– Checks serially equivalence.
– If validation fails, conflict resolution decides which

transaction(s) to abort.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Optimistic Concurrency 3

• Write phase
– If transaction is validated, all of its

tentative versions are made
permanent.

– Read-only transactions commit
immediately.

– Write transactions commit only
after their tentative versions are
recorded in permanent storage.

5

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Timestamp Ordering

• Uses timestamps to order transactions
accessing same data items according to
their starting times.

• Assigning timestamps:
– Clock based: assign global unique time

stamp to each transaction
– Monotonically increasing counter.

• Some time stamping necessary to avoid
“livelock”: where a transaction cannot acquire
any locks because of unfair waiting algorithm

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Local versus Distributed Transactions

• Local transactions:
– All transaction operations executed by

single server.
• Distributed transactions:

– Involve multiple servers.
• Both local and distributed transactions

can be simple or nested.
– Nesting: increase level of concurrency.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Transactions 1

c

s1

s2

s3

T1

T2

T3

Simple Distributed
Transaction

c

s1 s112

s121

s111

s11

s12

Nested Distributed
Transaction

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Transactions 2

• Transaction coordinator
– First server contacted by client.
– Responsible for aborting/committing.
– Adding workers.

• Workers
– Other servers involved report their

results to the coordinator and follow its
decisions.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Atomicity in Distributed Transactions

• Harder: several servers involved.
• Atomic commit protocols

– 1-phase commit
▪ Example: coordinator sends “commit” or “abort” to

workers; keeps re-broadcasting until it gets ACK
from all of them that request was performed.

▪ Inefficient.
▪ How to ensure that all of the servers vote + that they all

reach the same decision. It is simple if no errors occur, but
the protocol must work correctly even when server fails,
messages are lost, etc.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

2-Phase Commit 1

• First phase: voting
– Each server votes to commit or

abort transaction.
• Second phase: carrying out joint

decision.
– If any server votes to abort, joint

decision is to abort.

6

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

2-Phase Commit 2
• Phase I:

– Each participant votes for the transaction to be committed or aborted.
– Participants must ensure to carry out its part of commit protocol.

(prepared state).
– Each participant saves in permanent storage all of the objects that it

has altered in transaction to be in 'prepared state'.
• Phase II:

– Every participant in the transaction carries out the joint decision.
– If any one participant votes to abort, then the decision is to abort.
– If all participants vote to commit, then the decision is to commit.

Coordinator Workers

1. Prepared to commit?
2. Prepared to commit/abort

3. Committed.
4. Committed/aborted.

5. End.

Can commit?

Yes/No

Do commit/abort

Have committed/aborted

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Concurrency Control in
Distributed Transactions 1

• Locks
– Each server manages locks for its own data.
– Locks cannot be released until transaction

committed or aborted on all servers involved.
– Lock managers in different servers set their locks

independently, there are chances of different
transaction orderings.

– The different ordering lead to cyclic dependencies
between transactions and a distributed deadlock
situation.

– When a deadlock is detected, a transaction is
aborted to resolve the deadlock

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Concurrency Control in
Distributed Transactions 2

• Timestamp Ordering
– Globally unique timestamps.

▪ Coordinator issues globally unique
TS and passes it around.

▪ TS: <server id, local TS>
– Servers are jointly responsible for

ensuring that they performed in a
serially equivalent manner.

– Clock synchronization issues

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Concurrency Control in
Distributed Transactions 3

• Optimistic concurrency control
– Each transaction should be

validated before it is allowed to
commit.

– The validation at all servers takes
place during the first phase of the
2-Phase Commit Protocol.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Camelot [Spector et al.]
• Supports execution of distributed transactions.
• Specialized functions:

– Disk management
▪ Allocation of large contiguous chunks.

– Recovery management
▪ Transaction abort and failure recovery.

– Transaction management
▪ Abort, commit, and nest transactions.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Deadlock 1

• When locks are used, deadlock can occur.
• Circular wait in wait-for graph means

deadlock.
• Centralized deadlock detection,

prevention, and resolutions schemes.
– Examples:

▪ Detection of cycle in wait-for graph.
▪ Lock timeouts: hard to set TO value,

aborting unnecessarily.

7

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Deadlock 2

• Much harder to detect, prevent, and
resolve. Why?
– No global view.
– No central agent.
– Communication-related problems

▪ Unreliability.
▪ Delay.
▪ Cost.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Deadlock Detection

• Cycle in the global wait-for graph.
• Global graph can be constructed

from local graphs: hard!
– Servers need to communicate to

find cycles.
• Example from book (page 533).

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Deadlock Detection
Algorithms 1

• [Chandy et al.]
• Message sequencing is preserved.
• Resource versus communication models.

– Resource model
▪ Processes, resources, and controllers.
▪ Process requests resource from controller.

– Communication model
▪ Processes communicate directly via

messages (request, grant, etc) requesting
resources.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Resource versus
Communication Models

• In resource model, controllers are deadlock
detection agents; in communication model,
processes.

• In resource model, process cannot continue
until all requested resources granted; in
communication model, process cannot proceed
until it can communicate with at least one
process it’s waiting for.

• Different models, different detection alg’s.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Deadlock
Detection Schemes

• Graph-theory based.
• Resource model: deadlock when

cycle among dependent processes.
• Communication model: deadlock

when knot (all vertices that can be
reached from i can also reach i) of
waiting processes.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Deadlock Detection in
Resource Model

• Use probe messages to follow edges
of wait-for graph (aka edge chasing).

• Probe carries transaction wait-for
relations representing path in global
wait-for graph.

8

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Deadlock Detection Example
1. Server 1 detects transaction T is waiting for U, which

is waiting for data from server 2.
2. Server 1 sends probe T->U to server 2.
3. Server 2 gets probe and checks if U is also waiting;

if so (say for V), it adds V to probe T->U->V. If V is
waiting for data from server 3, server 2 forwards
probe.

4. Paths are built one edge at a time.
Before forwarding probe, server checks for cycle (e.g.,

T->U->V->T).
5. If cycle detected, a transaction is aborted.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Replication 1
• Keep more than one copy of data item.
• Technique for improving performance in

distributed systems.
• In the context of concurrent access to data,

replicate data for increase availability.
– Improved response time.
– Improved availability.
– Improved fault tolerance.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Replication 2

• But nothing comes for free.
• What’s the tradeoff?

– Consistency maintenance.
• Consistency maintenance approaches:

– Lazy consistency (gossip approach).
▪ An operation call is executed at just one replica; updating

of other replicas happens by lazy exchange of “gossip”
messages.

– Quorum consensus is based on voting techniques.
– Process group.

Stronger
consistency

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Quorum Consensus

• Goal: prevent partitions from from
producing inconsistent results.

• Quorum: subgroup of replicas whose size
gives it the right to carry out operations.

• Quorum consensus replication:
– Update will propagate successfully to a

subgroup of replicas.
– Other replicas will have outdated

copies but will be updated off-line.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Weighted Voting [Gifford] 1

• Every copy assigned a number of
votes (weight assigned to a particular
replica).

• Read: Must obtain R votes to read
from any up-to-date copy.

• Write: Must obtain write quorum of W
before performing update.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Weighted Voting 2

• W > 1/2 total votes, R+W > total
votes.

• Ensures non-null intersection
between every read quorum and write
quorum.

• Read quorum guaranteed to have
current copy.

• Freshness is determined by version
numbers.

9

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Weighted Voting 3
• On read:

– Try to find enough copies, ie, total votes no
less than R. Not all copies need to be current.

– Since it overlaps with write quorum, at least
one copy is current.

• On write:
– Try to find set of up-to-date replicas whose

votes no less than W.
– If no sufficient quorum, current copies

replace old ones, then update.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

ISIS 1

• Goal: provide programming environment
for development of distributed systems.

• Assumptions:
– DS as a set of processes with disjoint

address spaces, communicating over
LAN via MP.

– Processes and nodes can crash.
– Partitions may occur.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

ISIS 2

• Distinguishing feature: group
communication mechanisms
– Process group: processes

cooperating in implementing task.
– Process can belong to multiple

groups.
– Dynamic group membership.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Virtual Synchrony

• Real synchronous systems
– Events (e.g., message delivery) occur in

the same order everywhere.
– Expensive and not very efficient.

• Virtual synchronous systems
– Illusion of synchrony.
– Weaker ordering guarantees when

applications allow it.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Atomic Multicast 1

• All destinations receive a message or none.
• Primitives:

– ABCAST: delivers messages atomically and
in the same order everywhere.

– CBCAST: causally ordered multicast.
▪ “Happened before” order.
▪ Messages from given process in order.

– GBCAST
▪ used by system to manage group

addressing.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Other Features

• Process groups
– Group membership management.

• Broadcast and group RPC
– RPC-like interface to CBCAST, ABCAST,

and GBCAST protocols.
– Delivery guarantees

▪ Caller indicates how many responses
required.

–No responses: asynchronous.
–1 or more: synchronous.

10

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Implementation

• Set of library calls on top of UNIX.
• Commercially available.
• In the paper, example of distributed

DB implementation using ISIS.
• HORUS: extension to WANs.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Time in Distributed Systems

• Notion of time is critical.
• “Happened before” notion.

– Example: concurrency control using
TSs.

– “Happened before” notion is not
straightforward in distributed systems.
▪ No guarantees of synchronized

clocks.
▪ Communication latency.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Event Ordering

• Lamport defines partial ordering (→):
1. If X and Y events occurred in the

same process, and X comes
before Y, then X→Y.

2. Whenever X sends a message to
Y, then X→Y.

3. If X→Y and Y→Z, then X→Z.
4. X and Y are concurrent if X→Y

and Y→Z

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Causal Ordering

• “Happened before” also called
causal ordering.

• In summary, possible to draw
happened-before relationship
between events if they happen in
same process or there’s chain of
messages between them.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Logical Clocks

• Monotonically increasing counter.
• No relation with real clock.
• Each process keeps its own logical

clock Cp used to timestamp events.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Causal Ordering and
Logical Clocks

1. Cp incremented before each event.
Cp=Cp+1.

2. When p sends message m, it
piggybacks t=Cp.

3. When q receives (m, t), it computes:
Cq=max(Cq, t) before timestamping

message receipt event.
Example: text book page 398.

11

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Total Ordering

• Extending partial to total order.
• Global timestamps:

– (Ta, pa), where Ta is local TS and pa is
the process id.

– (Ta, pa) < (Tb, pb) iff Ta < Tb or
Ta=Tb and pa<pb

– Total order consistent with partial
order.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Virtual Time [Jefferson]

• Time warp mechanism.
• May or may not have connection with

real time.
• Uses optimistic approach, i.e., events

and messages are processed in the
order received: “look-ahead”.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Local Virtual Clock

• Process virtual clock set to TS of
next message in input queue.

• If next message’s TS is in the past,
rollback!
– Can happen due to different

computation rates,
communication latency, and
unsynchronized clocks.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Rolling Back

• Process goes back to TS(last message).
• Cancels all intermediate effects of events

whose TS > TS(last message).
• Then, executes forward.
• Rolling back is expensive!

– Messages may have been sent to other
processes causing them to send
messages, etc.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Anti-Messages 1
• For every message, there is an anti-

message with same content but different
sign.

• When sending message, message goes to
receiver input queue and a copy with “-”
sign is enqueued in the sender’s output
queue.

• Message is retained for use in case of roll
back.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Anti-Message 2

• Message + its anti-message = 0 when
in the same queue.

• Processes must keep log to “undo”
operations.

12

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Implementation

• Local control.
• Global control

– How to make sure system as a
whole progresses.

– “Committing” errors and I/O.
– Avoid running out of memory.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Global Virtual Clock

• Snapshot of system at given real time.
• Minimum of all local virtual times.
• Lower bound on how far processes

rollback.
• Purge state before GVT.
• GVT computed concurrently with rest of

time warp mechanism.
– Tradeoff?

