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Administration

• Use web discussion board
• Email with questions to 

csci555@usc.edu
– CSci555 in Subject of email
– Try web board for questions too

• Assignment 1 is due Thursday
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Today

• Concurrency and Synchronization 
[Hauser et al.]

• Transactions [Spector et al.]
• Distributed Deadlocks [Chandy et al.]
• Replication [Birman and Gifford]
• Time in Distributed Systems [Lamport and 

Jefferson]
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Concurrency Control and Synchronization

• How to control and synchronize possibly 
conflicting operations on shared data by 
concurrent processes?

• First, some terminology.
– Processes.
– Light-weight processes.
– Threads.
– Tasks.
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Processes

• Text book:
– Processing activity associated with an 

execution environment, ie, address 
space and resources (such as 
communication and synchronization 
resources).
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Threads
• OS abstraction of an activity/task.

– Execution environment expensive to create 
and manage.

– Multiple threads share single execution 
environment.

– Single process may spawn multiple threads.
– Maximize degree of concurrency among 

related activities.
– Example: multi-threaded servers allow 

concurrent processing of client requests. 
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Other Terminology

• Process versus task/thread.
– Process: heavy-weight unit of 

execution.
– Task/thread: light-weight unit of 

execution.
P1 P2

t1 t2

t11 t12

t1 t2
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Threads Case Study 1

• Hauser et al.
• Examine use of user-level threads in 2 

OS’s:
– Xerox Parc’s Cedar (research).
– GVX (commercial version of Cedar).

• Study dynamic thread behavior.
– Classes of threads (eternal, worker, 

transient)
– Number of threads.
– Thread lifetime.
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Thread Paradigms

• Different categories of usage:
– Defer work: thread does work not vital to the 

main activity.
▪ Examples: printing a document, sending 

mail.
– Pumps: used in pipelining; use output of a 

thread as input and produce output to be 
consumed by another task.

– Sleepers: tasks that repeatedly wait for an 
event to execute; e.g., check for network 
connectivity every x seconds.
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Synchronization

• So far, how one defines/activates 
concurrent activities.

• But how to control access to shared 
data and still get work done?

• Synchronization via:
– Shared data [DSM model].
– Communication [MP model]. 
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Synchronization by Shared Data

• Primitives
– Semaphores.
– Conditional critical regions.
– Monitors.

flexibilitystructure
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Synchronization by MP
• Explicit communication.
• Primitives send and receive

Blocking send, blocking receive: sender and receiver are blocked until 
message is delivered (redezvous)

Nonblocking send, blocking receive: sender continues processing 
receiver is blocked until the requested message arrives

Nonblocking send, nonblocking receive: messages are sent to a shared 
data structure consisting of queues (mailboxes)

Deadlocks ?

• Mailboxes one process sends a message to the mailbox and 
the other process picks up the message from the mailbox

Example:
Send (mailbox, msg)
Receive (mailbox, msg)
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Transactions 
• Database term.

– Execution of program that accesses a 
database.

• In distributed systems,
– Concurrency control in the client/server 

model.
– From client’s point of view, sequence of 

operations executed by server in servicing 
client’s request in a single step.
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Transaction Properties

• ACID:
Atomicity: a transaction is an atomic unit of processing 

and it is either performed entirely or not at all 

Consistency: a transaction's correct execution must take 
the database from one correct state to another

Isolation: the updates of a transaction must not be made 
visible to other transactions until it is committed 

Durability: if transaction commits,  the results must never 
be lost because of subsequent failure 
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Transaction Atomicity
• “All or nothing”.
• Sequence of operations to service client’s request are 

performed in one step, ie, either all of them are executed 
or none are.

• Start of a transaction is a continuation point to which it 
can roll back.

• Issues:
– Multiple concurrent clients: “isolation”.

1. Each transaction accesses resources as if there were no 
other concurrent transactions.

2. Modifications of the transaction are not visible to other 
resources before it finishes.

3. Modifications of other transactions are not visible during the 
transaction at all.

– Server failures: “failure atomicity”.
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Transaction Features
• Recoverability: server should be able to “roll back”

to state before transaction execution.

• Serializability: transactions executing concurrently 
must be interleaved in such a way that the resulting 
state is equal to some serial execution of the 
transactions

• Durability: effects of transactions are permanent. 
– A completed transaction is always persistent (though 

values may be changed by later transactions).

– Modified resources must be held on persistent storage 
before transaction can complete. May not just be disk 
but can include battery-backed RAM. 
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Concurrency Control

Maintain transaction serializability: 
establish order of concurrent transaction execution
Interleave execution of operations to ensure 
serializability

• Basic Server operations: read or write.
• 3 mechanisms:

– Locks.
– Optimistic concurrency control.
– Timestamp ordering.
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Locks 
• Lock granularity: affects level of concurrency.

– 1 lock per shared data item.
– Shared Read 

▪ Exists when concurrent transactions granted READ access 
▪ Issued when transaction wants to read and exclusive lock not 

held on item
– Exclusive Write

Exists when access reserved for locking transaction
Used when potential for conflict exists
Issued when transaction wants to update unlocked data

• Many Read locks simultaneously possible for a given item, but 
only one Write lock

• Transaction that requests a lock that cannot be granted must 
wait
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Lock Implementation

• Server lock manager
– Maintains table of locks for server data 

items.
– Lock and unlock operations.
– Clients wait on a lock for given data 

until data is released; then client is 
signalled.

– Each client’s request runs as separate 
server thread.
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Deadlock
• Use of locks can lead to deadlock.
• Deadlock: each transaction waits for another transaction to release 

a lock forming a wait cycle.
• Deadlock condition: cycle in the wait-for graph.
• Deadlock prevention and detection.

– require all locks to be acquired at once
Problems?

– Ordering of data items: once a transaction locks an item, it 
cannot lock anything occurring earlier in the ordering

• Deadlock resolution: lock timeout.

T1 T2

T3
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Optimistic Concurrency Control 1

• Assume that most of the time, 
probability of conflict is low.

• Transactions allowed to proceed in 
parallel until close transaction
request from client.

• Upon close transaction, checks for 
conflict; if so, some transactions 
aborted.
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Optimistic Concurrency 2
• Read phase

– Transactions have tentative version of data items it accesses.
▪ Transaction reads data and stores in local variables
▪ Any writes are made to local variables without updating the 

actual data
– Tentative versions allow transactions to abort without making 

their effect permanent.

• Validation phase
– Executed upon close transaction.
– Checks serially equivalence.
– If validation fails, conflict resolution decides which 

transaction(s) to abort.
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Optimistic Concurrency 3

• Write phase
– If transaction is validated, all of its 

tentative versions are made 
permanent.

– Read-only transactions commit 
immediately.

– Write transactions commit only 
after their tentative versions are 
recorded in permanent storage.
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Timestamp Ordering

• Uses timestamps to order transactions 
accessing same data items according to 
their starting times.

• Assigning timestamps:
– Clock based: assign global unique time 

stamp to each transaction 
– Monotonically increasing counter.

• Some time stamping necessary to avoid 
“livelock”: where a transaction cannot acquire 
any locks because of unfair waiting algorithm
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Local versus Distributed Transactions

• Local transactions:
– All transaction operations executed by 

single server.
• Distributed transactions:

– Involve multiple servers.
• Both local and distributed transactions 

can be simple or nested.
– Nesting: increase level of concurrency. 
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Distributed Transactions 1

c

s1

s2

s3

T1

T2

T3

Simple Distributed
Transaction

c

s1 s112

s121

s111

s11

s12

Nested Distributed
Transaction
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Distributed Transactions 2

• Transaction coordinator
– First server contacted by client.
– Responsible for aborting/committing.
– Adding workers.

• Workers
– Other servers involved report their 

results to the coordinator and follow its 
decisions.
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Atomicity in Distributed Transactions

• Harder: several servers involved.
• Atomic commit protocols

– 1-phase commit
▪ Example: coordinator sends “commit” or “abort” to 

workers; keeps re-broadcasting until it gets ACK 
from all of them that request was performed.

▪ Inefficient.
▪ How to ensure that all of the servers vote + that they all 

reach the same decision. It is simple if no errors occur, but 
the protocol must work correctly even when server fails, 
messages are lost, etc.
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2-Phase Commit 1

• First phase: voting
– Each server votes to commit or 

abort transaction.
• Second phase: carrying out joint 

decision.
– If any server votes to abort, joint 

decision is to abort.
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2-Phase Commit 2
• Phase I:

– Each participant votes for the transaction to be committed or aborted. 
– Participants must ensure to carry out its part of commit protocol. 

(prepared state). 
– Each participant saves in permanent storage all of the objects that it 

has altered in transaction to be in 'prepared state'. 
• Phase II:

– Every participant in the transaction carries out the joint decision. 
– If any one participant votes to abort, then the decision is to abort. 
– If all participants vote to commit, then the decision is to commit. 

Coordinator Workers

1. Prepared to commit?
2. Prepared to commit/abort

3. Committed.
4. Committed/aborted.

5. End.

Can commit?

Yes/No

Do commit/abort

Have committed/aborted
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Concurrency Control in 
Distributed Transactions 1

• Locks
– Each server manages locks for its own data.
– Locks cannot be released until transaction 

committed or aborted on all servers involved.
– Lock managers in different servers set their locks 

independently, there are chances of different 
transaction orderings.

– The different ordering lead to cyclic dependencies 
between transactions and a distributed deadlock 
situation.

– When a deadlock is detected, a transaction is 
aborted to resolve the deadlock
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Concurrency Control in 
Distributed Transactions 2

• Timestamp Ordering
– Globally unique timestamps.

▪ Coordinator issues globally unique 
TS and passes it around.

▪ TS: <server id, local TS>
– Servers are jointly responsible for 

ensuring that they performed in a 
serially equivalent manner. 

– Clock synchronization issues
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Concurrency Control in 
Distributed Transactions 3

• Optimistic concurrency control
– Each transaction should be 

validated before it is allowed to 
commit.

– The validation at all servers takes 
place during the first phase of the 
2-Phase Commit Protocol.
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Camelot [Spector et al.]
• Supports execution of distributed transactions.
• Specialized functions:

– Disk management
▪ Allocation of large contiguous chunks.

– Recovery management
▪ Transaction abort and failure recovery.

– Transaction management
▪ Abort, commit, and nest transactions.
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Distributed Deadlock 1

• When locks are used, deadlock can occur.
• Circular wait in wait-for graph means 

deadlock.
• Centralized deadlock detection, 

prevention, and resolutions schemes.
– Examples: 

▪ Detection of cycle in wait-for graph.
▪ Lock timeouts: hard to set TO value, 

aborting unnecessarily.
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Distributed Deadlock 2

• Much harder to detect, prevent, and 
resolve. Why?
– No global view.
– No central agent.
– Communication-related problems

▪ Unreliability.
▪ Delay.
▪ Cost.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE 

Distributed Deadlock Detection

• Cycle in the global wait-for graph.
• Global graph can be constructed 

from local graphs: hard!
– Servers need to communicate to 

find cycles.
• Example from book (page 533).
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Distributed Deadlock Detection 
Algorithms 1

• [Chandy et al.]
• Message sequencing is preserved.
• Resource versus communication models.

– Resource model
▪ Processes, resources, and controllers.
▪ Process requests resource from controller.

– Communication model
▪ Processes communicate directly via 

messages (request, grant, etc) requesting 
resources.
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Resource versus
Communication Models

• In resource model, controllers are deadlock 
detection agents; in communication model, 
processes.

• In resource model, process cannot continue 
until all requested resources granted; in 
communication model, process cannot proceed 
until it can communicate with at least one 
process it’s waiting for.

• Different models, different detection alg’s.  
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Distributed Deadlock
Detection Schemes

• Graph-theory based.
• Resource model: deadlock when 

cycle among dependent processes.
• Communication model: deadlock 

when knot (all vertices that can be 
reached from i can also reach i) of 
waiting processes.
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Deadlock Detection in
Resource Model

• Use probe messages to follow edges 
of wait-for graph (aka edge chasing).

• Probe carries transaction wait-for 
relations representing path in global 
wait-for graph.
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Deadlock Detection Example
1. Server 1 detects transaction T is waiting for U, which 

is waiting for data from server 2.
2. Server 1 sends probe T->U to server 2.
3. Server 2 gets probe and checks if U is also waiting; 

if so (say for V), it adds V to probe T->U->V. If V is 
waiting for data from server 3, server 2 forwards 
probe.

4. Paths are built one edge at a time.
Before forwarding probe, server checks for cycle (e.g., 

T->U->V->T).
5. If cycle detected, a transaction is aborted.
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Replication 1
• Keep more than one copy of data item.
• Technique for improving performance in 

distributed systems.
• In the context of concurrent access to data, 

replicate data for increase availability.
– Improved response time.
– Improved availability.
– Improved fault tolerance.
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Replication 2

• But nothing comes for free.
• What’s the tradeoff?

– Consistency maintenance.
• Consistency maintenance approaches:

– Lazy consistency (gossip approach).
▪ An operation call is executed at just one replica; updating 

of other replicas happens by lazy exchange of “gossip”
messages.

– Quorum consensus is based on voting techniques.
– Process group.

Stronger 
consistency
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Quorum Consensus

• Goal: prevent partitions from from 
producing inconsistent results.

• Quorum: subgroup of replicas whose size 
gives it the right to carry out operations.

• Quorum consensus replication: 
– Update will propagate successfully to a 

subgroup of replicas.
– Other replicas will have outdated 

copies but will be updated off-line.
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Weighted Voting [Gifford] 1

• Every copy assigned a number of 
votes (weight assigned to a particular 
replica).

• Read: Must obtain R votes to read 
from any up-to-date copy.

• Write: Must obtain write quorum of W
before performing update.
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Weighted Voting 2

• W > 1/2 total votes, R+W > total 
votes.

• Ensures non-null intersection 
between every read quorum and write 
quorum.

• Read quorum guaranteed to have 
current copy.

• Freshness is determined by version 
numbers.
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Weighted Voting 3
• On read:

– Try to find enough copies, ie, total votes no 
less than R. Not all copies need to be current.

– Since it overlaps with write quorum, at least 
one copy is current.

• On write:
– Try to find set of up-to-date replicas whose 

votes no less than W.
– If no sufficient quorum, current copies 

replace old ones, then update.
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ISIS 1

• Goal: provide programming environment 
for development of distributed systems.

• Assumptions:
– DS as a set of processes with disjoint 

address spaces, communicating over 
LAN via MP.

– Processes and nodes can crash.
– Partitions may occur.
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ISIS 2

• Distinguishing feature: group 
communication mechanisms
– Process group: processes 

cooperating in implementing task.
– Process can belong to multiple 

groups.
– Dynamic group membership.
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Virtual Synchrony

• Real synchronous systems
– Events (e.g., message delivery) occur in 

the same order everywhere.
– Expensive and not very efficient.

• Virtual synchronous systems
– Illusion of synchrony.
– Weaker ordering guarantees when 

applications allow it. 
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Atomic Multicast 1

• All destinations receive a message or none.
• Primitives:

– ABCAST: delivers messages atomically and 
in the same order everywhere.

– CBCAST: causally ordered multicast.
▪ “Happened before” order.
▪ Messages from given process in order.

– GBCAST
▪ used by system to manage group 

addressing.
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Other Features

• Process groups 
– Group membership management.

• Broadcast and group RPC
– RPC-like interface to CBCAST, ABCAST, 

and GBCAST protocols.
– Delivery guarantees

▪ Caller indicates how many responses 
required.

–No responses: asynchronous.
–1 or more: synchronous.
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Implementation

• Set of library calls on top of UNIX.
• Commercially available.
• In the paper, example of distributed 

DB implementation using ISIS.
• HORUS: extension to WANs.
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Time in Distributed Systems

• Notion of time is critical.
• “Happened before” notion.

– Example: concurrency control using 
TSs.

– “Happened before” notion is not 
straightforward in distributed systems.
▪ No guarantees of synchronized 

clocks.
▪ Communication latency.
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Event Ordering

• Lamport defines partial ordering (→):
1. If X and Y events occurred in the 

same process, and X comes 
before Y, then X→Y.

2. Whenever X sends a message to 
Y, then X→Y.

3. If X→Y and Y→Z, then X→Z.
4. X and Y are concurrent if X→Y 

and Y→Z
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Causal Ordering

• “Happened before” also called 
causal ordering.

• In summary, possible to draw 
happened-before relationship 
between events if they happen in 
same process or there’s chain of 
messages between them.
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Logical Clocks

• Monotonically increasing counter.
• No relation with real clock.
• Each process keeps its own logical 

clock Cp used to timestamp events.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE 

Causal Ordering and
Logical Clocks

1. Cp incremented before each event.
Cp=Cp+1.

2. When p sends message m, it 
piggybacks t=Cp.

3. When q receives (m, t), it computes:
Cq=max(Cq, t) before timestamping

message receipt event.
Example: text book page 398.
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Total Ordering

• Extending partial to total order.
• Global timestamps: 

– (Ta, pa), where Ta is local TS and pa is 
the process id.

– (Ta, pa) < (Tb, pb) iff Ta < Tb or 
Ta=Tb and pa<pb

– Total order consistent with partial 
order.
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Virtual Time [Jefferson] 

• Time warp mechanism.
• May or may not have connection with 

real time.
• Uses optimistic approach, i.e., events 

and messages are processed in the 
order received: “look-ahead”.
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Local Virtual Clock

• Process virtual clock set to TS of 
next message in input queue.

• If next message’s TS is in the past, 
rollback! 
– Can happen due to different 

computation rates, 
communication latency, and 
unsynchronized clocks.
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Rolling Back

• Process goes back to TS(last message).
• Cancels all intermediate effects of events 

whose TS > TS(last message).
• Then, executes forward.
• Rolling back is expensive!

– Messages may have been sent to other 
processes causing them to send 
messages, etc.
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Anti-Messages 1
• For every message, there is an anti-

message with same content but different 
sign.

• When sending message, message goes to 
receiver input queue and a copy with “-”
sign is enqueued in the sender’s output 
queue.

• Message is retained for use in case of roll 
back.
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Anti-Message 2

• Message + its anti-message = 0 when 
in the same queue.

• Processes must keep log to “undo”
operations.
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Implementation

• Local control.
• Global control

– How to make sure system as a 
whole progresses.

– “Committing” errors and I/O.
– Avoid running out of memory.
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Global Virtual Clock

• Snapshot of system at given real time.
• Minimum of all local virtual times.
• Lower bound on how far processes 

rollback.
• Purge state before GVT.
• GVT computed concurrently with rest of 

time warp mechanism.
– Tradeoff?


