
1

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Advanced Operating Systems
Lecture notes

Dongho Kim
Tatyana Ryutov
University of Southern California
Information Sciences Institute

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Administration
• Class e-mail: csci555@usc.edu
• Office hours: SAL 234, Friday 11am to noon
• Reading report #1 will be posted during the week-end
• TAs

▪ Chansook Lim
– Office: SAL 317 ; (213) 740-6502
– e-mail chansool at usc dot edu
– Office Hours: Tuesday, 10 a.m. -- noon

▪
Sunhee Yoon

– Office: SAL 211 ; (213) 740-4508
– e-mail sunheeyo at usc dot edu
– Office Hours: Thursday, 1p.m. -- 3 p.m.

• Class Web page
http://gost.isi.edu/courses/usc_csci555.html
– Reading list !

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

CSci555: Advanced Operating Systems
Lecture 2 – September 2, 2005

Dr. Tatyana Ryutov
Dr. Dongho Kim
University of Southern California
Information Sciences Institute

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Outline: Communications Models

• Communication Models:
– General concepts.
– Message passing.
– Distributed shared memory (DSM).
– Remote procedure call (RPC) [Birrel et al.]

▪ Light-weight RPC [Bershad et al.]
– DSM case studies

▪ IVY [Li et al.]
▪ Linda [Carriero et al.]

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Communication Models

• Support for processes to
communicate among themselves.

• Traditional (centralized) OS’s:
– Provide local (within single

machine) communication support.
– Distributed OS’s: must provide

support for communication across
machine boundaries.
▪ Over LAN or WAN.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Communication Paradigms
• 2 paradigms

– Message Passing (MP)
– Distributed Shared Memory (DSM)

• Message Passing
– Processes communicate by sending

messages.
• Distributed Shared Memory

– Communication through a “virtual shared
memory”.

2

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Message Passing
• Basic communication primitives:

– Send message.

– Receive message.

• Modes of communication:
– Synchronous versus asynchronous.

• Semantics:
– Reliable versus unreliable.

...Send
Sending Q

...
Receiving Q

Receive

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Synchronous Communication

• Blocking send
– Blocks until message is transmitted
– Blocks until message acknowledged

• Blocking receive
– Waits for message to be received

• Process synchronization.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Asynchronous Communication

• Non-blocking send: sending process continues
as soon message is queued.

• Blocking or non-blocking receive:
– Blocking:

▪ Timeout.
▪ Threads.

– Non-blocking: proceeds while waiting for
message.
▪ Message is queued upon arrival.
▪ Process needs to poll or be interrupted.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Reliability of Communication
• Unreliable communication:

– “best effort” - send and hope for the best
– No ACKs or retransmissions.
– Application must provide its own reliability.
– Example: User Datagram Protocol (UDP)

▪ Applications using UDP either don’t need
reliability or build their own (e.g., UNIX NFS
and DNS (both UDP and TCP), some audio
or video applications)

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Reliability of Communication
• Reliable communication:

– Different degrees of reliability.
– Processes have some guarantee that messages

will be delivered.
– Example: Transmission Control Protocol (TCP)
– Reliability mechanisms:

▪ Positive acknowledgments (ACKs).
▪ Negative Acknowledgments (NACKs).

– Possible to build reliability atop unreliable
service (E2E argument).

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Distributed Shared Memory

• Motivated by development of shared-
memory multiprocessors which do
share memory.

• Abstraction used for sharing data
among processes running on
machines that do not share memory.

• Processes think they read from and
write to a “virtual shared memory”.

3

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

DSM 2

• Primitives: read and write.
• OS ensures that all processes see all

updates.
– Happens transparently to

processes.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

DSM and MP
• DSM is an abstraction!

– Gives programmers the flavor of a centralized
memory system, which is a well-known
programming environment.

– No need to worry about communication and
synchronization.

• But, it is implemented atop MP.
– No physically shared memory.
– OS takes care of required communication.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Caching in DSM

• For performance, DSM caches data locally.
– More efficient access (locality).
– But, must keep caches consistent.
– Caching of pages for of page-based DSM.

• Issues:
– Page size.
– Consistency mechanism.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Approaches to DSM

• Hardware-based:
– Multi-processor architectures with

processor-memory modules connected
by high-speed LAN (E.g., Stanford’s
DASH).

– Specialized hardware to handle reads
and writes and perform required
consistency mechanisms.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Approaches to DSM

• Page-based:
– Example: IVY.
– DSM implemented as region of

processor’s virtual memory;
occupies same address space
range for every participating
process.

– OS keeps DSM data consistency
as part of page fault handling.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Approaches to DSM

• Library-based:
– Or language-based.
– Example: Linda.
– Language or language extensions.
– Compiler inserts appropriate library

calls whenever processes access DSM
items.

– Library calls access local data and
communicate when necessary.

4

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

DSM Case Studies: IVY

• Environment:”loosely coupled”
multiprocessor.
– Memory is physically distributed.
– Memory mapping managers (OS kernel):

▪ Map local memories to shared virtual space.
▪ Local memory as cache of shared virtual space.
▪ Memory reference may cause page fault; page

retrieved and consistency handled.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

IVY

• Issues:
– Read-only versus writable data.
– Locality of reference.
– Granularity (1 Kbyte page size).

▪ Bigger pages versus smaller
pages.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

IVY

• Memory coherence strategies:
– Page synchronization

▪ Invalidation
▪ Write broadcast

– Page ownership
▪ Fixed: page always owned by same

processor
▪ Dynamic

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

IVY Page Synchronization

• Invalidation:
– On write fault, invalidate all copies; give

faulting process write access; gets copy of
page if not already there.

– Problem: must update page on reads.
• Write broadcast:

– On write fault, fault handler writes to all
copies.

– Expensive!

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

IVY Memory Coherence

• Paper discusses approaches to memory
coherence in page-based DSM.
– Centralized: single manager

residing on a single processor
managing all pages.

– Distributed: multiple managers
on multiple processors managing
subset of pages.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

DSM Case Studies: Linda

• Language-based approach to DSM.
• Environment:

– Similar to IVY, ie, loosely coupled
machines connected via fast
broadcast bus.

– Instead of shared address space,
processes make library calls inserted by
compiler when accessing DSM.

– Libraries access local data and
communicate to maintain consistency.

5

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Linda

• DSM: tuple space.
• Basic operations:

– out (data): data added to tuple space.
– in (data): removes matching data from

TS; destructive.
– read (data): same as “in”, but tuple

remains in TS (non-destructive).

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Linda Primitives: Examples

• out (“P”, 5, false) : tuple (“P”, 5, false)
added to TS.
– “P” : name
– Other components are data values.
– Implementation reported on the paper:

every node stores complete copy of TS.
– out (data) causes data to be broadcast

to every node.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Linda Primitives: Examples

• in (“P”, int I, bool b): tuple (“P”, 5,
false) removed from TS.
– If matching tuple found locally,

local kernel tries to delete tuple on
all nodes.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Remote Procedure Call

• Builds on MP.
• Main idea: extend traditional (local)

procedure call to perform transfer of
control and data across network.

• Easy to use: analogous to local calls.
• But, procedure is executed by a different

process, probably on a different machine.
• Fits very well with client-server model.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RPC Mechanism
1. Invoke RPC.
2. Calling process suspends.
3. Parameters passed across network to target

machine.
4. Procedure executed remotely.
5. When done, results passed back to caller.
6. Caller resumes execution.
Is this synchronous or asynchronous?

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RPC Advantages

• Easy to use.
• Well-known mechanism.
• Abstract data type

– Client-server model.
– Server as collection of exported

procedures on some shared
resource.

– Example: file server.
• Reliable.

6

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RPC Semantics 1

• Delivery guarantees.
• “Maybe call”:

– Clients cannot tell for sure
whether remote procedure was
executed or not due to message
loss, server crash, etc.

– Usually not acceptable.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RPC Semantics 2

• “At-least-once” call:
– Remote procedure executed at

least once, but maybe more than
once.

– Retransmissions but no duplicate
filtering.

– Idempotent operations OK; e.g.,
reading data that is read-only.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RPC Semantics 3

• “At-most-once” call
– Most appropriate for non-idempotent

operations.
– Remote procedure executed 0 or 1 time,

ie, exactly once or not at all.
– Use of retransmissions and duplicate

filtering.
– Example: Birrel et al. implementation.

▪ Use of probes to check if server
crashed.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RPC Implementation (Birrel et al.)

work

Caller Callee

Call
packet

Result

User
User
stub

RPC
runtime

RPC
runtime

Server
stub Server

call pck
args

xmit rcv unpk call

return
pck
result

xmitrcvunpk
result

return

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RPC Implementation 2

• RPC runtime mechanism responsible
for retransmissions,
acknowledgments.

• Stubs responsible for data packaging
and un-packaging;
– AKA marshalling and un-

marshalling: putting data in form
suitable for transmission.
Example: Sun’s XDR.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Binding
• How to determine where server is? Which

procedure to call?
– “Resource discovery” problem

▪ Name service: advertises servers and
services.

▪ Example: Birrel et al. uses Grapevine.
• Early versus late binding.

– Early: server address and procedure name
hard-coded in client.

– Late: go to name service.

7

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

Synchronous & Asynchronous RPC

Synchronous Asynchronous
Client Server Client Server

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

RPC Performance
• Sources of overhead

– data copying
– scheduling and context switch.

• Light-Weight RPC
– Shows that most invocations took place on a

single machine.
– LW-RPC: improve RPC performance

for local case.
– Optimizes data copying and thread

scheduling for local case.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

LW-RPC 1

• Argument copying
– RPC: 4 times
– copying between kernel and user

space.

– LW-RPC: common data area (A-stack)
shared by client and server and used to
pass parameters and results; access by
client or server, one at a time.

Copyright © 1995-2005 Clifford Neuman and Dongho Kim - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

LW-RPC 2

• A-stack avoids copying between kernel
and user spaces.

• Client and server share the same thread:
less context switch (like regular calls).

A

client

user

kernel

server

1. copy args
2. traps 3. upcall

4. executes & returns

